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Highlights
The decade of GWAS constitutes a
clear improvement in the recent history
of reproducibility in medical genetic
research. The extremely high rates of
replication imply that, for the first time,
findings can be trusted.

Large numbers of false positives and
the tiny effect size of genetic risk var-
iants induced a change in incentives
during the GWAS era, priming the
requirement for large sample sizes
and a culture of data sharing.

There is increasing interest in andneedof
newmethodologies tobetter understand
thegeneticarchitectureofcomplex traits.

It isnecessary tokeep fosteringaculture
of compulsory replication to maintain
the current high reliability in findings.

Although the success of GWAS has
not translated into an ability to predict
phenotypes based on genetic mar-
kers, polygenic and transcriptional risk
scores (PRSs and TRSs) hold potential
for stratification according to risk.
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Since the publication of theWellcome Trust Case Control Consortium (WTCCC)
landmark study a decade ago, genome-wide association studies (GWAS) have
led to the discovery of thousands of risk variants involved in disease etiology.
This success story has two angles that are often overlooked. First, GWAS
findings are highly replicable. This is an unprecedented phenomenon in com-
plex trait genetics, and indeed in many areas of science, which in past decades
have been plagued by false positives. At a time of increasing concerns about
the lack of reproducibility, we examine the biological and methodological
reasons that account for the replicability of GWAS and identify the challenges
ahead. In contrast to the exemplary success of disease gene discovery, at
present GWAS findings are not useful for predicting phenotypes. We close with
an overview of the prospects for individualized prediction of disease risk and its
foreseeable impact in clinical practice.

The High Replicability of GWAS Findings Is an Unprecedented Phenomenon
GWAS (see Glossary) are the tool of choice to identify genetic variants associated with complex
disease and other phenotypes of interest [1]. They have revolutionized human genetics with the
discovery of thousands of alleles that influence disease risk (Box 1) [1]. Success, however, has
been accompanied by boom-and-bust mood swings in the field. The early crisis of the ‘missing
heritability’ is a paradigmatic example [2]. The initial hype after the publication of theWTCCC [3]
was dampened by generalized disappointment about the amount of genetic variance
explained by GWAS results, which was perceived as disappointingly low. Despite the expo-
nential yield in terms of discovered loci, the relevance of GWAS findings often remains under the
spotlight [4].

There is, however, a persistent feature of GWAS results that is often overlooked: they stand out
for their high replicability. The past decade has been characterized by a plethora of findings
that have stood the test of time almost in their entirety. This degree of success is an
unprecedented phenomenon in the field of complex trait genetics and, even more generally,
in many scientific fields [5], which some argue are plagued by false-positive findings that
generate a sense of ‘replicability crisis’ that may be fuel for antiscience movements (Box 2) [6].

Here we examine the biological and methodological reasons that have led to the success of
GWAS in replicating genetic discoveries. We start with an analysis of the replicability of disease-
associated variants discovered by GWAS, with special attention to temporal and spatial
patterns of replication and the inferences that can be drawn about the genetic architecture
of disease. We next discuss the reasons behind the outstanding reliability of GWAS findings
and identify extant challenges to ensure the replicability of future findings. We end with an
analysis of the current state of phenotype prediction based on GWAS findings, which remains
one of the key challenges for successful implementation of precision medicine.
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Box 1. Quick Glance at the History and Rationale of GWAS

The two-page perspective by Risch and Merikangas in 1996 [59] can be considered as the start of the GWAS era. This
landmark paper demonstrated that association studies based on polymorphisms spanning all of the genome would be
powered to detect susceptibility variants of small effects. The key idea for association mapping lies in exploiting the
correlation structure among markers that are nearby in our genomes (LD). This property allows the performance of
indirect association tests, whereby it is necessary to type and test only a single variant (tagSNP) selected to act as a
surrogate for all variants in the block of LD.

GWAS look for alleles transmitted with disease status and therefore with significantly different frequencies between
cases and controls. After imputation of variants, GWAS test millions of SNPs and hence it is important to account for
multiple testing to avoid false positives. The most used threshold to declare statistical evidence of association is
P < 5 � 10�8, which arises from adjusting a 5% type I error rate (false positives) to the roughly 1–10million independent
tests performed.

Attention to other statistical matters is also important. Among others, extensive quality control steps include ensuring
the reliability of the genotyping data, careful evaluation of the genetic ancestry of the samples to avoid population
stratification, which may lead to P-value inflation if unaccounted for, and adjustment for clinical covariates such as age,
gender, and lifestyle to avoid spurious associations and biases in the estimation of effect size. Finally, GWAS are
increasingly performed through large meta-analyses that combine statistical evidence from multiple cohorts. Even if all
substudies test the same hypothesis, it is important to quantify the presence of heterogeneity to identify outliers that
should be excluded.

Overall, the GWAS era has constituted an impressive tour de force. As beautifully shown in the famous karyotype
diagram released quarterly by the GWAS Catalog,ii we now know of over 12 000 SNPs associated at genome-wide
significance with myriad traits. Overall, GWAS have demonstrated a sweeping performance in human genetics and are
likely to remain as the main tool for the discovery of genes involved in disease in the future.
Widespread Replicability of GWAS Findings
Replication of newly reported results is the most reliable validation of scientific discoveries, as it
confirms their true-positive status. In short, ‘there is consensus in science that the final arbiter is
replication’ [7]. In complex trait genetics, the most used definition is exact replication, whereby
the same genetic marker is consistently associated with the same phenotype in independent
Box 2. Replicability Crises in Other Scientific Fields

In 2010 Carney et al. reported that adopting an expansive body posture before facing a stressful situation could boost
self-confidence and authority by increasing testosterone and decreasing cortisol levels [60]. Despite attracting plenty of
attention, this finding failed to replicate in a larger study on power posing and hormonal levels [61]. Similar to social
psychology, neuroimaging has also been on the spot in recent times. Of note, similar false positives have been
ubiquitous across scientific fields [5], including physics research in the 1960s through the discovery of ‘polywater’, a
hypothetical polymerized form of water that was eventually debunked [62].

Genomics itself has not escaped from the lack-of-replication problem, including the highly cited and yet still-debated
gene-by-environment interaction between the serotonin transporter gene, adverse life events, and risk of depression
[63]. In this regard, lack of correction for multiple testing is often the primary factor leading to false positives. In many
fields, P < 0.05 is still deemed enough evidence to call an association true. Given that studies are generally under-
powered, using such a liberal threshold is a recipe for false positives [64]. Genomics and physics have shielded
themselves against this problem by imposing highly stringent P-value cut offs, setting an example that should be
embraced by scientists in other communities [65].

Some scholars have stated that this replicability crisis is overblown [66]. Amajor issue is that controlling the false positive
rate (FPR) depends on the fraction of hypotheses tested that are true [5]. Thus, if only 1% of hypotheses prove to be
correct, with 80% power at P < 0.05 only eight of 1000 tests will be true positives, relative to 50 false positives. Happily,
statistical analysis of reported P-value distributions strongly implies that the true-positive rate is much higher and the
FPR is well controlled across much of science [67]. Also on the bright side, the consensus about the importance of
ensuring large enough sample sizes is steadily growing. In this regard, several initiatives to detect false positives have
emerged, namely the Reproducibility Project, Pubpeer, clinicaltrials.gov, and Retraction Watch, among many others.
Taking all of this into account, if we want to assure a future of sustainable, reproducible, and replicable science we need
to take direct action and extend the basic principles that have been shown to work to as many fields of research as
possible.
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Glossary
Candidate-gene studies: the main
strategy used before the GWAS era.
These studies tested only a small set
of mutations in a genic region with
plausible involvement with disease.
Common disease–common
variant (CD/CV): the model that
disease is attributable to a moderate
number of variants of common
frequency. This was the main
paradigm under the studies in the
early 2000s and it played a key role
in fuelling the genome-wide strategy,
although it is no longer considered
relevant.
Effect size: a quantitative measure
of the strength of a phenomenon. In
GWAS it has been generally reported
as OR for binary traits (diseases) and
as regression coefficient (b) for
quantitative traits.
Genetic architecture of disease:
the underlying genetic basis of a
phenotypic trait, which includes the
total number of causal variants, their
frequencies and magnitudes of
effect, and their degree of
interactions with one another or
environmental factors.
Genetic variance: the proportion of
total variance in a certain phenotype
that is explained by the combination
factors.
Genome-wide association studies
(GWAS): analyze hundreds of
thousands of markers, generally
SNPs, comparing their frequencies
across very large samples of
individuals that share phenotypic
characteristics.
Genome-wide significance: a P
value that is generally used as a
threshold to consider a positive
finding. In GWAS it is usually
declared when a variant is
associated with P < 5 � 10�8. This
value is considered robust to avoid
multiple testing issues and is roughly
the Bonferroni value for 0.05 divided
by �1 million independent genomic
intervals.
Linkage disequilibrium (LD): the
nonrandom association of alleles at
different loci. The levels of LD vary
among loci depending on local
recombination rates. In humans,
nearby genetic markers are usually
linked in blocks of high LD, a feature
that facilitates disease variant
discovery through LD-based
association mapping.
cohorts [8]. This is usually attempted in GWAS, which usually have built-in replication stages for
markers with the strongest evidence of association. However, these follow-up attempts do not
necessarily adhere to the exact replication criterion and less stringent significance criteria are
often used. Often, as well, consistency of the direction of effect can lead to an initially marginal
association attaining genome-wide significance, which is widely regarded as replication.

Although external replication is always advantageous, clear-cut evidence is often lacking
because diverse definitions of replication are used in the literature. For instance, the statistical
evidence warranted to declare replication may range from a soft threshold, whereby nominal
association (e.g., P < 0.05) is deemed enough by subsequent studies, to a hard one in which
only associations that repeatedly achieve genome-wide significance (and are hence ‘redis-
covered’) in several studies are considered formally replicated. To complicate matters, positive
association at variants in strong linkage disequilibrium (LD) with the original marker SNP is
often used as evidence of replication even if formal exact replication is not achieved. In this
Opinion article, we use the ‘rediscovery’ label for whenever a previously discovered SNP–trait
association achieves strong statistical significance in a subsequent study and always explain
the criteria used to consider replication when discussing the inferences from studies analyzing
GWAS replicability.

Due to these hard-to-reconcile criteria, the replicability of GWAS is an important dimension that
often goeswithout further scrutiny. A simplistic but straightforwardway to assess replication is to
use the NHGRI-EBI GWAS Catalogi for evaluation of the degree to which GWAS hits are
rediscovered in subsequent studies. In Figure 1 (Key Figure), we present a temporal analysis
of the catalog, a widely used resource based on manual curation of SNP–trait findings from
published GWAS. Since the catalog includes only those associations with suggestive statistical
evidenceof association (P < 10�5), any record in thecatalog that reportsaSNP–trait pair thatwas
reported in apreviousstudycanbe labeledasapositive replicationwith strongstatistical evidence
of the previously known association. The figure includes all findings for 60 diseases with >15
discovered SNPs. To allow for array heterogeneity, we label as replication any record where an
SNP in LDwith the discovery SNP [393_TD$DIFF](r2[392_TD$DIFF] > 0.8) is associatedwith the same disease in a subsequent
study. The figure illustrates that most of the top hits included in the GWAS Catalog had already
been reported in previous publications and hence correspond to replications of known SNP–trait
associations. This was the case even in the first years of GWAS, which were often met with
skepticism because the yield of new associations was perceived as unsatisfactory [9].

Perhaps a more underappreciated aspect of that early period of the GWAS era is that, for the
first time in complex trait genetics, findings are undoubtedly robust. For instance, all of the 24
risk associations discovered at genome-wide significance by the WTCCC in 2007 were
replicated within 2 years. This pattern has not changed over the years, and the bulk of findings
since 2012 are replications of associations that have been described at least twice.

Robustness is widespread and cannot be explained only because large-effect associations
replicate extensively. An inspection of the replicability of six disease traits illustrates this point,
which holds for rediscovery in the GWASCatalog at P < 10�5 as well as for nominal replications
at P < 0.05 in large meta-analyses published after the discovery study. Specifically, we
compared the average rediscovery rates of variants of moderate [odds ratio (OR) between
1.2 and 1.5] and low effect size (OR < 1.2). As shown in Figure 2, rediscovery rates in the
GWAS Catalog are similar regardless of effect size; namely, an average of 36.5% across the six
diseases for variants of moderate risk and 43% for those of weakest effect (P = 0.93,
Kolmogorov–Smirnov test).
Trends in Genetics, Month Year, Vol. xx, No. yy 3
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Population Architecture using
Genomics and Epidemiology
(PAGE) multiethnic cohort: the
PAGE study is an ongoing
consortium formed by several
multiethnic population-based studies.
The PAGE consortium has published
several pioneer studies exploring the
consistency of risk effects across
genetic ancestries.
Publication bias: phenomenon in
which only a fraction of studies
performed is eventually published
and available to other researchers,
usually involving studies that fail to
find an effect in the expected
direction remaining unpublished.
Rediscovery: the finding of SNP–
trait associations with suggestive
statistical evidence or even genome-
wide significance that is consistent
with the discovery from the original
study.
Replicability: property of a study or
field whereby it produces the same
or similar results when reproduced in
a different sample, location, or time.
Transcriptome-wide association
study (TWAS): a new methodology
that uses genotypes and summary-
statistic-level data to impute gene
expression in individuals participating
in GWAS. This permits the
identification of significant gene–trait
associations without the harsh
multiple-testing correction typical of
GWAS.
Type I error: statistical term that
refers to the situation in hypothesis
testing in which the null hypothesis is
rejected despite being true (often
called a false positive). Given the
large number of independent tests
performed, the probability of type I
errors increases exponentially in
GWAS if multiple-testing corrections
are not considered.
Rediscovery rates of �40% would seem to imply that more than half of GWAS hits remain
unreplicated. However, these percentages are severe underestimates because the GWAS
Catalog records only those SNP–trait associations that achieve P < 10�5. A more detailed
analysis of the same traits focused on recently published meta-analyses renders much higher
replication rates. In total, we enquired the status of 339 SNP–trait associations discovered at
genome-wide significance (P < 5 � 10�8) by GWAS published before the corresponding
meta-analysis study. An impressive 94% of results do indeed replicate at P < 0.05 (Figure 2
and Table S1 in the supplemental information online) with high correlation between the
discovery and replication attempt ORs (Pearson’s r = 0.54, P < 10�16). These magnitudes
resemble the �100% replication rates observed in the literature after accounting for statistical
power and the winner’s curse [10,11], confirming the reliability of GWAS. The relatively low
attention that replication receives together with the confusion in the literature about what can be
formally considered as replication suggests that initiatives such as the GWAS Catalog should
formally track replication of their SNP–trait entries.

Cross-Ancestry Replicability
Although more challenging, comparisons across ethnic groups reinforce the same idea and,
furthermore, show that risk variants are shared across ancestries. Early analyses of the
Population Architecture using Genomics and Epidemiology (PAGE) multiethnic
cohort reported perfect concordance in risk allele directions at risk SNPs for prostate cancer
and type 2 diabetes (T2D) [12,13]. This consistency holds for a wide range of diseases [14] and
large nominal (P < 0.05) replication rates are observed at the level of SNPs [10], loci pinpointed
by these SNPs [15], and genome-wide effect sizes [16]. A caveat, however, is that GWAS
based on individuals of non-European ancestry usually study fewer individuals [17], rendering
our picture of genetic susceptibility to disease across populations incomplete [18]. Moreover,
caution is required since incomplete replication can also be informative: there are sound cases
of lack of interpopulation replicability indicating that some risk variants are population specific
(e.g., NOD2 and Crohn’s disease in East Asian populations [19,20]). Correlations in effect size
across ethnicities are often significantly less than one, and accordingly a fraction of SNPs do not
replicate. For example, in the comparison of European and Asian associations with major
depression, failure to replicate is most commonly because of divergent allele frequencies,
which reduce power in one population since the proportion of attributable risk declines with
minor allele frequency [21].

Replicability Is a Function of the Genetic Architecture of Disease
Besides confirming the reliability of GWAS as a tool to dissect genetic risk, patterns of temporal
and cross-ancestry replicability can illuminate the genetic architecture of complex traits,
informing about the reliability of effect estimations and their variability across human ancestries.
Age-related macular degeneration (AMD) is a case in point. In one of the first GWAS, Klein et al.
[22] detected a strong risk variant located in CFH (OR = 4.6). Given their exceedingly low
sample size (96 patients and 50 controls), this report could have been a fluke or, worse, a
severe overestimation of the real effect size. With time, however, this and a few other high-risk
variants have been extensively replicated, indicating that a large proportion of AMD heritability is
accounted for by a handful of variants with extremely large effect sizes [23].

More generally, the power to discover an association is proportional to the amount of
phenotypic variance explained by the polymorphism; namely, the product of the effect size
squared and the heterozygosity (VE = 2pqb2 [394_TD$DIFF]). Here the effect size in standard deviation units is
the average effect of substituting one allele for the other. For a trait regulated by thousands of
genes, even for common alleles, b will generally be smaller than 1/20th of the standard
4 Trends in Genetics, Month Year, Vol. xx, No. yy
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Key Figure

An Increasing Proportion of Genome-wide Association Study (GWAS) Findings Corresponds to
Replications of SNP–Trait Associations That Were Previously Reported
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deviation (e.g., the equivalent of less than 1 mm of height). Very large sample sizes are required
to detect such effects and there is usually a winner’s curse of overestimating the effect size, but
suitably large replication studies can confirm their influence. Replicability thus also informs
about the shared architecture of other diseases vastly more complex than AMD. For instance,
the convergence in associated loci confirms that a large proportion of the genetic risk for
immune diseases is shared across conditions [24,25]. Similarly, the relative lack of findings for
mental disorders suggests that psychiatric traits have an infinitesimal architecture controlled by
many loci of tiny effects that can be discovered only through large meta-analyses [4,26].

A corollary is that patterns of replicability at specific associations can afford valuable lessons
about disease heterogeneity. For instance, in 2007 three contemporaneous scans for T2D by
the WTCCC, DGI, and FUSION consortia collaborated in one of the first coordinated data-
sharing efforts to enhance evidence about the detected loci [3,27,28]. From the incomplete
interstudy replication for the signal at the FTO locus, with clear heterogeneity in effect, it was
learned that FTO exerts its effects through body mass index (BMI), playing only an indirect role
in T2D risk [29]. More recently, the development of new methodologies to systematically
explore intercohort and interdisease heterogeneity suggests that studying replicability will be
key to improving our understanding of the genetic etiology of disease [30,31].

Collaborative Science and Large Cohorts Were Incentives for
Reproducibility
The reliability of GWAS findings is a novelty that departs sharply from historical experience in the
field. For over two decades, the literature in medical genetics has been tormented by promising
but later discredited discoveries [32,33]. This was specially the case for candidate-gene
studies, in which research groups would perform association analysis focused on genes that
had been selected previously based on their biological plausibility. These studies in particular
have been characterized by high rates of false positives [34]. For instance, after thousands of
candidate-gene studies published during the 1990s and early 2000s, only a handful of the
most-studied associations have shown consistent replication [32]. Moreover, the small fraction
of findings from the candidate-gene era that have been confirmed by GWAS [35] mainly
comprises risk variants of low effect sizes discovered by the studies with the largest sample
sizes [36]. Many factors have contributed to the poor track record of candidate-gene repro-
ducibility, including insufficient availability of genetic markers, inadequate handling of popula-
tion structure, lack of statistical power due to low sample size, improper control of multiple
testing, and extensive publication bias [32].

The surplus of promising but eventually failed associations seriously undermined the credibility
of the whole LD–association-mapping approach, but on the bright side it made researchers
aware that they needed to do better. Awareness about the ubiquity of false positives and about
effects being smaller than initially expected shaped the field profoundly [pre-GWAS simulation
Figure 1. The graph reports the number of discoveries of new loci and rediscovery of previously discovered loci for 60 diseases included in the GWAS Catalog
(quantitative traits were not considered; last accessed 17 March 2017). Data are classified according to the semester of publication (from 2005 to 2016). Given that all
records included in the catalog achieve at least P < 10�5, all newly included SNP–disease pairs that were already included because of being discovered by previous
GWAS can be considered replications of the first finding. We labeled these instances as rediscoveries or replicas. The rediscovery figure for a given semester
corresponds to the total cumulative number since 2005, separated according to whether the rediscovery event constitutes the first evidence for replication of a given
locus (‘first replica’) or whether it was previously replicated (‘repeated replica’). Given the diversity of arrays before the recent generalization of imputation in GWAS,
SNPs are considered replicated when either the same SNP is rediscovered or another SNP in R2 � 0.8 (using 1KG Europeans) within a �500-kb window is reported.
Only GWAS performed in Eurasian populations were evaluated.
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Figure 2. Risk Variants Discovered by Genome-wide Association Studies (GWAS) Replicate Similarly
Regardless of the Odds Ratio (OR). X-axis: Classified by disease, percentage of SNPs with discovery OR between
1.2 and 1.5 that have been rediscovered at least once and included in the GWAS Catalog (filled circles) or that achieve
nominal evidence of association (P < 0.05) in a large meta-analysis published after the discovery GWAS (inverted
triangles). Y-axis: For the same diseases, proportion of rediscovery for risk SNPs with discovery OR < 1.2. Although
the percentages vary by disease, the average rediscovery of low-effect variants is not significantly lower than that of
variants with larger effect (P = 0.93, Kolmogorov–Smirnov test) and overall rediscovery estimates are highly correlated
(Spearman’s rho: 0.54, P = 10�16).
studies concurrent with the development of the common disease–common variant (CD/
CV) hypothesis systematically assumedORs of 1.5, 2, 4, or larger] [37]. Such awareness led to:
(i) a push for increased sample size; (ii) the use of stringent measures to control for multiple
testing and avoid false positives (type I error); and (iii) a culture of collaboration and data
sharing [36].

While it is also true that technological advances in genomics helped to pave the way for GWAS,
the generalization of proper multiple testing corrections and setting adequate P-value thresh-
olds to declare significance might have been the most important factor favoring the large
replicability of GWAS. The push for statistical rigor was embedded in a new culture of data
Trends in Genetics, Month Year, Vol. xx, No. yy 7
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sharing and demands for external replication before publication (often enforced by funders [38]
and journals [39]), which not only translated into more powered studies but also reduced the
incidence of publication bias. For instance, the strict threshold to declare genome-wide
significance proposed in the original WTCCC study and accompanying feature [40] was a
clear guideline against false positives adopted by subsequent studies.

As a final point, the expectation that genetic effects should for the most part be very small has
allowed the flagging and correction of results that looked flawed, such as the original GWAS for
exceptional longevity [39]. Collaboration and data sharing, once restricted to large-scale
scientific infrastructures such as large particle accelerators, has more recently been spear-
headed by the genomics community. We propose that similar changes would benefit other
scientific areas. This is not to say that we simply favor ‘big science’, but rather that we believe all
scientific endeavors, regardless of their scale, benefit from openness.

What Next? Replicability in the Full-Genome Era
The cost-effectiveness of SNP array genotyping followed by imputation suggests that GWAS
will remain for some time as the main instrument for the detection of loci associated with
complex traits [1,41]. New technological advances, however, may challenge the replicability
achieved by the current generation of GWAS. For instance, the decreasing cost of high-
throughput sequencing (NGS) allows exome and whole-genome studies that will, however,
need new thresholds to correct for multiple testing [42]. In addition, the availability of ample
clinical history for some big cohorts, such as the UK Biobank, asks for careful control of
spurious correlations that may arise from multiple comparisons.

New methodological approaches can also potentially harm the reliability of findings. For
instance, the interest in nonadditive effects such as epistasis and gene-by-environment
interactions demands careful attention to latent covariates, which can introduce biases if
unaccounted for [43,44]. Similarly, the list of new tools, such as multimarker analyses, which
go beyond single SNP tests, or the inclusion of functional evidence to reweight GWAS results, is
growing by the day [45,46]. The heterogeneity in these methodologies will necessarily compli-
cate the evaluation of replicability.

Strict guidelines for publication and the ample experience gathered suggest that GWAS will
maintain large replicability rates. However, exponential increases in available genomic and
phenotype information may lead to progressive specializations in the hypotheses tested,
necessarily departing from a classical GWAS framework. For instance, investigators working
on exome data might decide to increase statistical power by aggregating genes into pathways.
Under such scenarios, progressive relaxation of the statistical standards may lead to higher
rates of false positives.

Extremely large GWAS finding hundreds of signals are already neglecting the importance of
ascertaining the positive replication status of each discovered variant. For instance, the
2014 meta-analysis for height by the GIANT consortium focused on the overall concor-
dance of effects between discovery and independent cohorts [47]. Instead of discussing
the replication status of specific findings, this study highlighted the overall amount of
phenotypic variance explained [47]. As explained in the next section, this approach is
growing in parallel with the interest in using GWAS data for phenotype prediction. However,
for variant and gene discovery purposes, insisting on strict significance thresholds and on
garnering replication evidence for each individual variant will still be the best recipe to
ensure high replicability rates.
8 Trends in Genetics, Month Year, Vol. xx, No. yy
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The Problem of Low Predictability
As the biological underpinnings of disease are progressively unveiled, using the findings from
GWAS to predict risk of disease at the individual level has gained traction. However, despite its
importance for the prospects of implementing precision medicine in the clinic, phenotype
predictability remains very low [48]. In the following paragraphs we summarize the reasons for
the current state of phenotype prediction. We provide specific examples and calculations to
visualize the performance of current genetic predictors and end with a discussion of the
prospects for using predictors in the clinic.

The most-used method for risk profiling involves the calculation of genetic risk scores (GRSs)
that sum the number of genome-wide significant alleles per individual in a target cohort.
However, even if cases tend to have larger risk scores on average, the distributions of cases
and controls tend to overlap for the most part. Although reasons related to the genetic
architecture of complex traits partially account for the limited power of GRSs, this is also
an unfortunate consequence of the limited fraction of disease susceptibility that GWAS have
uncovered.

One of the most-used measures to test the performance of any risk score is the area under the
ROC curve (AUC), which summarizes the true-positive rate (sensitivity) and false-positive rate (1
– specificity) for all possible cut offs. A classifier performing randomly and thus with null
predictive power has an AUC of 0.5, whereas a perfect one reaches an AUC of 1. Thanks
to the public availability of summary statistics from GWAS, it is straightforward to explore the
performance of GRSs in any target dataset. In Figure 3 we use genotypes from the WTCCC to
offer a glimpse of the temporal progress of GRSs and resulting improvements in AUC values for
five different conditions. In unbroken lines, we show the evolution of classical predictors based
on genome-wide significant SNPs. The plot indicates that, although the list of risk SNPs
available in the GWAS Catalog has increased steadily over the years, the power of GRSs
seems to have plateaued and only tiny improvements in the ability to distinguish between cases
and controls can be noticed for the most recent years. In the broken lines, we add the
equivalent calculations using variants detected by the COMBI algorithm that was recently
proposed [45]. This method adds a preliminary step based on a support vector machine that
aims to improve the detection of variants and that, as seen in Figure 3, has the potential to refine
GRSs and provide gains in performance.

Given the low power of GWAS to detect small effects, most causal variants are known to remain
as false negatives. In recent years, genetic prediction has moved towards increasing the signal
by using markers that do not achieve genome-wide significance. In this regard, polygenic risk
scores (PRSs) constitute a more powered alternative to GRS. PRS are calculated using SNPs
selected through less-stringent significance thresholds (e.g., P < 10�3). However, even for
PRSs using thousands of SNPs, the AUC for most traits is still below 0.7 [49]. These low figures
indicate that GWAS have not yet mustered the large sample sizes – in the millions – that are
needed to refine effect-size estimates and achieve accurate individual risk profiles [50].

Although larger GWASwill lead to better characterization of the genetic architecture of disease,
the field of genetic prediction is moving towards using evidence from genome-wide markers. A
flurry of new methods is already using publicly available summary statistics from large studies
[51], incorporating evidence from LD patterns to refine the effect-size estimates (instead of
simply focusing on the most significant variant for each associated locus) [52] and, more
recently, combining association evidence from several traits to refine trait prediction [53,54].
Strategies integrating GWAS with gene expression data, such as transcriptome-wide
Trends in Genetics, Month Year, Vol. xx, No. yy 9
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Figure 3. Increased Availability of Known Risk Variants and New Methodologies Are Improving the Ability to Classify Individuals According to
Disease. We calculated the area under the ROC curve (AUC) for five diseases using the samples from the Wellcome Trust Case Control Consortium (WTCCC) paper
and SNPs discovered in different year ranges. X-axis: Discovery year of disease-associated variants included in the genetic risk score (GRS) for each disease (based on
year of inclusion in the GWAS Catalog). Y-axis: AUC using samples from the WTCCC case–control study. Performance of two predictors is shown; namely, a standard
GRS (broken lines) and a modified version of the GRS using the number of risk alleles multiplied by the weight for each SNP, as derived from the COMBI algorithm
(unbroken lines). The numbers of SNPs used in each AUC calculation are indicated in the small numbers next to each point. Even if the number of risk SNPs has
increased steadily, for both methodologies we observe a plateau in the predictive power of the GRSs.
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association studies (TWAS) [55], or directly based on the latter such as the transcriptional
risk score (TRS) [56] also hold great promise for increasing the prediction of phenotypes from
genotypes.

Still, it is important to ensure that the community maintains realistic hopes about the potential of
genetic predictors. Ultimately, even if all causal variants and their true effects were known with
exactitude, the heritability of each disease constitutes an upper bound for the maximum
phenotypic variance that could be accounted for by a genetic predictor [50]. For instance,
PRSs for T2D will top off with AUC �0.8 as GWAS progressively grow into sample sizes in the
low millions [57].

More importantly, the foreseeable improvements in terms of AUC do not imply immediate
translational potential in the clinical setting. Most complex diseases have a low prevalence, and
therefore even a specific cut-off value in risk score that maximizes both the detection of future
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Figure 4. Polygenic Risk Scores (PRSs) Stratify Individuals According to Risk of Disease. X-axis: 55 210
samples of European ancestry from the Kaiser GERA Cohort are classified according to deciles of PRS for type 2 diabetes
(T2D). Y-axis: Percentage of patients in each category. The graph shows the impact of increasing deciles of a weighted
genetic risk score based on 414 linkage disequilibrium (LD)-pruned SNPs associated with T2D (P < 10�3 in the 2014
transethnic DIAGRAM GWAS). The PRS captures risk of disease according to the genetic makeup of individuals, with
twofold enrichment of cases in the top versus the lowest decile.
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Outstanding Questions
Will the field grow tired of GWAS in
response to new paradigms and, if
so, will this decrease the interest in
replicability that the field has seen in
the past decade?

If, instead,GWASare scaled up to sam-
ple sizes in the order ofmillions, howwill
replicability be ensured in face of the
increased levels of phenotypic and
genetic heterogeneity? What will be
the accuracy of genetic risk predictors
based on these large-scale studies?

What will be the replicability of findings
arising from new methodologies such
as machine learning or studies
inspecting complex phenomena such
as gene-by-environment and epistatic
interactions? The extent to which good
practices that fueled GWAS success
can be implemented on these studies
is unknown.

In what form will GWAS findings from
genomic medicine be incorporated in
the day-to-day clinical setting? The
extent of the accuracy they will bring
to practice remains open.

Regarding other scientific fields,
whether a generalized push for larger
sample sizes will be enough to ensure
replicability remains to be seen. More
complex measures such as registering
studies before completion (as is done
in clinical trials) should also help.
cases and the exclusion of healthy individuals can be offset by the fact that a large proportion of
the detected individuals end up being false positives. The latter point is summarized by the
positive predictive value (PPV); namely, the proportion of ascertained individuals that will truly
develop the disease, which can remain low even if the AUC increases. A low PPV hurts the
diagnostic power of risk scores because prediction of disease is not accurate at the individual
level and thus neutralizes some of the social and economic benefits of genetic testing for
complex disease.

At present, the most immediate clinical application of risk scores lies in the potential for risk
stratification and complements the information provided by other risk factors. To illustrate this
point, we calculated a PRS for T2D in the Kaiser RPGEH GERA cohort. As shown in Figure 4,
the classification of individuals according to PRS deciles effectively captures an increasing
fraction of T2D cases, which hints at its potential for stratification according to individual risk of
disease. It is often underappreciated that many epidemiological risk factors have effect sizes
that are like those of risk alleles discovered by GWAS, such as dietary factors that are known to
increase risk of cancer [58]. This suggests that, rather than genomics information substituting
for classical epidemiology as the initial fad seemed to indicate, we are entering an era of
integrative predictive medicine. In conclusion, while it is still too soon, we can anticipate that
genetic profiling will help in pinpointing individuals at high risk, which overall should lead to
targeted lifestyle interventions and better decision-making in the clinic.

Concluding Remarks and Future Perspectives
GWAS have profoundly revolutionized both medical and complex trait genomics. To a large
extent, this has been possible because findings in these fields, for the first time, are trustworthy.
Although a variety of reasons account for this success, it is important to highlight the beneficial
effect of having access to a robust methodology. GWAS led to the genetics community taking
measures to avoid practices that lead to false discoveries; for example, by enforcing strict P-
value thresholds corrected for multiple testing to declare findings statistically significant.
Although we have witnessed amazing discoveries, we need new visions and methodologies
to fully tackle questions about the genetic architecture of complex traits. In particular, larger
studies and improved methods will be needed to keep improving phenotype prediction to the
level where it is justifiably commonplace in clinical settings. How quickly this will be fully
achieved, rather than whether it will or not, is one of many unanswered questions (see
Outstanding Questions).
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