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Gene expression profiling can be used to uncover the 
mechanisms by which loci identified through genome-wide 
association studies (GWAS) contribute to pathology1,2. Given 
that most GWAS hits are in putative regulatory regions and 
transcript abundance is physiologically closer to the phenotype 
of interest2, we hypothesized that summation of risk-allele-
associated gene expression, namely a transcriptional risk score 
(TRS), should provide accurate estimates of disease risk. We 
integrate summary-level GWAS and expression quantitative 
trait locus (eQTL) data with RNA-seq data from the RISK 
study, an inception cohort of pediatric Crohn’s disease3,4. We 
show that TRSs based on genes regulated by variants linked to 
inflammatory bowel disease (IBD) not only outperform genetic 
risk scores (GRSs) in distinguishing Crohn’s disease from 
healthy samples, but also serve to identify patients who in time 
will progress to complicated disease. Our dissection of eQTL 
effects may be used to distinguish genes whose association 
with disease is through promotion versus protection, thereby 
linking statistical association to biological mechanism. The 
TRS approach constitutes a potential strategy for personalized 
medicine that enhances inference from static genotypic risk 
assessment.

GWAS have been very successful in identifying thousands of genetic 
variants associated with disease, but the predictive performance of 
GRSs is limited by the amount of heritability they explain, which 
is usually low5–8. Given that the majority of variants discovered by 
GWAS are likely to influence gene regulation, risk scores based on 

gene expression could constitute an alternative to classical GRSs. We 
explored the performance of the TRS in the RISK study, which was 
designed to identify factors that increase risk of a complicated course 
of disease and included ileal biopsies from 215 patients with complica-
tion-free Crohn’s disease and 35 controls profiled at diagnosis with 
RNA-seq3,4,9. After careful monitoring for 3 years, 27 of the patients 
with Crohn’s disease progressed to stricturing or penetrating disease, 
allowing us to ask whether genomic profiles could be used to inform 
mechanisms of pathogenesis and predict disease status.

We started by considering 232 independent SNPs associated with 
IBD or one of its main forms—Crohn’s disease or ulcerative colitis10. 
Assigning relevant genes at GWAS loci can be challenging, but eQTL 
studies provide an effective way to uncover which gene is likely to 
account for the discovered pathogenic effects. We queried the Blood 
eQTL browser (see URLs), a large meta-analysis of eQTL effects 
in peripheral blood11, to ascertain genes regulated by IBD-predis-
posing variants. Around half (n = 122; 52.6%) of IBD-associated 
SNPs acted as or were in strong linkage disequilibrium (LD; r2 > 
0.8) with at least one cis-eQTL in peripheral blood, for a total of 
157 independent candidate genes (~1.3 candidate gene per SNP; 
Supplementary Table 1).

The RNA-seq samples from the RISK study consisted of ileal biop-
sies, so we next asked whether the aforementioned eQTLs are also 
active in small intestine (Online Methods). In line with previous stud-
ies12–14, we observed considerable sharing of signals between the two 
tissue types (Supplementary Table 2), with strong concordance in the 
direction of effects (70%; P = 1.7 × 10−6, sign test) and including just 
two cases with reversal of sign between blood and ileum confirmed in 
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the Genotype-Tissue Expression (GTEx) data set (PNKD and RGS14; 
Supplementary Fig. 1). This overlap indicates that eQTL effects at 
IBD-associated SNPs can be used to polarize gene expression rela-
tive to risk as a means to understand which allele is associated with 
pathogenesis at each gene. For instance, the G risk allele for IBD at 
rs12627970 increased abundance of SYNGR1 (Fig. 1a), whereas the G 
risk allele at rs2930047 downregulated DAP (Fig. 1b). We can hence 
polarize transcript abundance such that, in these examples, predicted 
risk of IBD would be highest in individuals with high and low expres-
sion of SYNGR1 and DAP, respectively. Summing z scores over all 
contributing transcripts identified as the targets of eQTLs in blood, 
the TRS was correlated with the GRS but suggested that different 
individuals had the highest risk of disease (Fig. 1c).

A TRS based on all 157 candidate genes ascertained from the Blood 
eQTL browser distinguished individuals with Crohn’s disease from 
control individuals (∆s.d. = 0.51, P = 0.0019; Supplementary Fig. 2a), 
but with just a slight improvement on the performance of a classical 
weighted-allelic-sum GRS based on the very same IBD-associated SNPs 
that also have eQTL activity (∆s.d. = 0.51, P = 0.02). However, this set 
might have included some genes at which the eQTL action by the GWAS 
SNP does not necessarily imply pathogenicity (being instead due, for 
example, to pleiotropy or linkage). Several recent methods such as coloc 
and summary-data-based Mendelian randomization (SMR) have been 
developed to ask in a formal statistical framework whether independent 
signals are consistent with the same variant producing the signals in both 
studies15–17. We ran coloc15 for all 157 associated candidate genes (Online 
Methods) and prioritized 29 genes that had the strongest evidence for 
colocalization of association signals (H4 > 80% using GWAS P values for 
Crohn’s disease, ulcerative colitis and IBD; Supplementary Fig. 3 and 
Supplementary Table 3).

The high-confidence set of 29 candidate genes excelled at distin-
guishing disease status (Fig. 2a) as well as progression to complicated 
disease, namely stricturing (B2) or penetrating/fistulizing (B3) dis-
ease according to the Montreal classification system (Fig. 2b). The 
TRS distribution of Crohn’s disease samples was highly significantly 
greater than that of individuals without IBD, who fell almost entirely 

below the mean risk score of the cases (∆s.d. = 1.46, P = 1 × 10−13). 
Similarly, the small group that progressed to complicated disease 
showed significantly higher scores than individuals who remained 
in the milder B1 state (∆s.d. = 0.63, P = 5 × 10−5). Notably, this  
discrimination appeared regardless of tissue inflammation, as inflamed 
and non-inflamed B1 samples had similar TRSs (Supplementary 
Fig. 4). To ensure the robustness of these observations, we repeated 
the analyses on the basis of a partially overlapping set of 39 genes 
detected by SMR as targets of IBD-associated variants (Bonferroni-
adjusted PSMR < 2.3 × 10−4, 5% Bonferroni; Online Methods and 
Supplementary Table 4). This larger list of genes rendered similar 
results, distinguishing again between B1 and B2/B3 disease behavior 
(TRS: ∆s.d. = 0.44, P = 0.007; Supplementary Fig. 5a,b), confirming 
the power of TRSs.

In contrast, none of the comparisons rendered significant differ-
ences when using the corresponding GRSs based on GWAS-associ-
ated SNPs (for example, using the loci ascertained by coloc; Fig. 2a,b). 
Furthermore, genome-wide polygenic risk scores (PRSs) assessed 
using LD pruning8 across the full range of inclusion thresholds failed 
to approach the performance of the TRS, peaking at ∆s.d. = 0.69 and  
P = 9 × 10–4 for 668 SNPs at P < 0.001 for the disease–control comparison  
(Supplementary Fig. 6). Consistent with recent GWAS results 
indicating independent genetic contributions to susceptibility and 
prognosis in Crohn’s disease18, no PRS approached significance for 
disease progression, which further highlights the enhanced resolution  
provided by TRSs.

The above results are based on ileal gene expression profiles but 
use eQTLs that are likely enriched for immune functions, as they 
were detected in blood from healthy adults. Applying the approach 
to an independent sample of gene expression in peripheral blood, 
the TRS also distinguished 61 pediatric Crohn’s disease cases and 
12 controls (∆s.d. = 1.2, P = 4 × 10−5). We next hypothesized that 
ileal mucosal samples might include effects that are not observed in 
peripheral blood but can be important for IBD pathology and are 
thus likely to improve the power of TRSs. eQTL mapping in 365 RISK 
samples identified associations at P < 1 × 10−5 for 40 SNPs with 46 
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Figure 1 Transcriptional risk scores integrate GWAS and eQTL results to measure individual risk of disease based on transcript abundance. (a) The 
rs12627970[G] allele increases susceptibility to IBD and is associated with elevated expression of SYNGR1. Some individuals with the risk genotype 
(GG) show average or even low expression levels, and some individuals with the protective genotype (AA) have high expression, suggesting that 
abundance of SYNGR1 provides a different estimate of individual risk of disease than genotype. Black horizontal bars denote the median expression for 
each genotype. OR, odds ratio. (b) By contrast, the rs2930047[G] risk allele is associated with lower expression of DAP, implying that reduced levels of 
DAP increase risk of IBD and, hence, that inversion of the z-score measures polarized risk of disease. (c) Summation of polarized transcriptional activity 
according to eQTL activity (left y axis in a and b) summed over all genes, and further standardized, is correlated with an allelic-sum GRS plotted on 
the x axis but provides an independent predictor of IBD. The P values in a and b correspond to the eQTL study in RISK samples, and the P value in c 
corresponds to a Spearman’s rank correlation test.
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genes that fell in the vicinity (within 1 Mb) of the 232 SNPs associ-
ated with IBD (Online Methods and Supplementary Table 5). These 
included associations known to be active in ileal tissue such as FUT2 
and ERAP2 (refs. 14,19,20).The list of ileum effects included 27 genes 
not described in the Blood eQTL browser, 7 of which were selected by 
coloc as having joint eQTL and GWAS effects consistent with a causal 
contribution to IBD (H4 > 80% for the three phenotypes considered; 
Supplementary Table 5). A TRS based on this short list of seven loci, 
using the direction of effect of each eQTL in ileum to polarize risk, 
failed to separate samples according to disease status (∆s.d. = 0.17,  
P = 0.32) or course of disease (∆s.d. = −0.11, P = 0.53). Surprisingly, a 
14-gene TRS including 7 more ileum-specific loci exclusively detected 
by SMR also failed to discriminate cases and controls.

In addition to cis effects, gene expression is also influenced by a 
combination of trans-acting genetic effects and environmental effects, 
both of which tend to produce coordinated patterns of gene expres-
sion that may disrupt the expected coherence of the signs of eQTL 
and GWAS effects21,22. Specifically, IBD pathology is accompanied 
by altered expression of many genes as a response to altered intestinal 
microbiota23,24. For example, Figure 3a shows how ADCY3 is upregu-
lated in individuals with Crohn’s disease, consistent with the direction 
of the eQTL effect shown by IBD risk allele rs13407913[G] (β = 0.14,  
P = 4 × 10−16), whereas CD302–LY75 is induced in the mucosa of 
patients with Crohn’s disease despite being downregulated by the 

GWAS risk allele rs4664304[G] (β = −0.065, P = 4 × 10−7; Fig. 3b). 
Detailed exploration on a gene-by-gene basis (Fig. 3c,d) suggests that 
this type of disruption may account for the poor performance of the 
14-gene TRS based on ileum eQTL effects. The three genes acting 
in a coherent fashion (∆s.d. > 0.3 between cases and controls in the  
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Figure 3 Gene expression polarized according to predicted direction of risk 
uncovers two divergent mechanisms of association with disease. For about 
half of the eQTLs, trans and environmental effects result in coordinated 
modification of gene expression in cases relative to controls. (a) Example 
of a coherent association, where individuals with the risk genotype (GG) 
show increased expression of ADCY3, consistent with the prediction based 
on the direction of effect of this allele as an eQTL in ileal tissue. Left and 
right columns of individual points for each genotype correspond to cases 
(n = 210) and controls (n = 235), respectively. The purple and light blue 
boxes depict the median and interquartile range for each group.  
(b) Example of an incoherent association, where individuals with the risk 
allele have reduced expression in the opposite direction to the overall 
increased levels of CD302–LY75 in cases. (c,d) Considering eQTLs 
discovered in ileal tissue, eight genes are controlled by ileal eQTLs that 
increase their expression (c) and six genes are controlled by eQTLs that 
decrease their expression (d). Purple and light blue bars above the heat 
maps indicate cases (n = 210) and controls (n = 35), respectively; bars 
along the left indicate genes that are coherent (green), incoherent (red) 
and stable (orange) with respect to disease. (e,f) Considering eQTLs 
discovered in blood, 26 genes are upregulated (e) and 31 genes are 
downregulated (f) by the allele associated with IBD. In this case,  
25 genes are coherent and just 13 are incoherent. The heat map is color-indexed 
according to the z score of each gene from low (blue) to high (red) expression.
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predicted direction) enhance TRS performance, but they are offset by 
the five genes whose incoherence (∆s.d. > 0.3 in the opposite direc-
tion) diminishes the performance of the TRS. The other six genes 
are stable with respect to disease status, not showing a significant 
difference in expression between cases and controls.

By contrast, for the 57 genes detected by either coloc or SMR as 
target genes on the basis of eQTL effects in blood, there was a clear 
excess of coherent associations (n = 25) over incoherent ones (n = 13)  
(Fig. 3e,f). Clearly, most of the coherent and incoherent genes are 
strongly co-regulated, implying that environmental or other trans 
effects mediate the paradoxical deviation between observed and pre-
dicted directions of effect, rather than confounding effects of sec-
ondary cis-acting alleles. Examples of incoherence include CD226, 
encoding an immunoglobulin receptor involved in control of viral 
infection25 and implicated in several autoimmune diseases26, which 
is induced in individuals with Crohn’s disease (∆s.d. = 1.07) in spite 
of being downregulated by the GWAS risk allele rs727088[G] (P = 1 
× 10−46; Supplementary Table 3). Similarly, TNFRSF18 encodes a 
receptor of the tumor necrosis factor (TNF) family with a key role in 
maintaining self-tolerance27,28 and is also induced in individuals with 
Crohn’s disease (∆s.d. = 1.49) even though the risk allele decreases 
its expression (Supplementary Table 3). The functional evidence 
for both genes suggests a scenario in which induction is protective 

(for example, to clear infection in the gastrointestinal tract); hence, 
individuals with the GWAS risk allele are more prone to developing 
chronic inflammation because they fail to induce expression suffi-
ciently to fully engage the defense response.

Consistent with this interpretation, analysis of ImmVar consortium 
data on ex vivo responses to 4 h and 48 h of stimulation29 indicated a 
common theme for the 13 incoherent genes. The nine genes that were 
incoherently upregulated in individuals with Crohn’s disease were also 
induced in CD4+ T cells after 48 h of stimulation with anti-CD3/CD28 
beads, whereas three of the four genes that were incoherently downreg-
ulated in affected individuals were also suppressed after immune stim-
ulation (Fig. 4a). The coherently regulated genes did not show such a 
consistent pattern (Fig. 4b), suggesting that their disease response may 
not be due to immune stimulation. This difference between the two 
sets of genes was significant (P = 0.03, Fisher’s exact test), and similar 
results applied to the effects of stimulation with lipopolysaccharide 
(LPS) or infection with influenza virus (data not shown).

Overall, the contrasting behavior of coherent and incoherent genes 
is consistent with the notion that gene-regulatory IBD risk alleles have 
detrimental effects through two different mechanisms: some directly 
promote disease because they regulate gene expression in a manner 
that is inherently pathogenic, and others fail to safeguard individuals  
by insufficiently engaging protective shifts of gene expression.  
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Figure 4 Incoherent genes show similar patterns in stimulated immune cells and are more weakly associated with IBD according to GWAS. The data set 
includes changes in gene expression after 4 h and 48 h in primary T cells stimulated with anti-CD3/CD28 beads as reported by the ImmVar consortium. 
(a) All but one of the 13 incoherent genes show changes in expression at 48 h that mimic the inconsistent tendencies observed in individuals with Crohn’s 
disease from the RISK cohort. (b) Coherent genes show more diverse changes in patterns of expression. (c) Incoherent genes (n = 13) have significantly 
lower odds ratios of association with IBD by GWAS than coherent (n = 25) or stable (n = 19) genes. P values (two-sided t test) are reported for each  
pairwise comparison.
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Intriguingly, the latter class generally has odds ratios around 1.1, 
which is significantly lower than for the remainder (Fig. 4c). Biopsy 
gene expression profiling of larger cohorts should confirm this infer-
ence and further refine our ability to distinguish active and protective 
risk mechanisms. Other interpretations are also possible, including 
the possibility that eQTL effects in the ileum are not contributing 
strongly to pathogenesis and processes unique to individual genes. 
An excellent example of the latter is the one incoherent gene that  
contravenes our model, CISD1, which encodes mitoNEET, an Fe/ 
S-domain protein localized to the mitochondria where it is required 
for redox sensing30. Mitochondrial function is protective against 
progression in Crohn’s disease4,31, yet transcription of CISD1 was 
downregulated in patients overall and strongly induced in T cells by 
ex vivo stimulation, and the risk allele increased expression.

The existence of incoherent associations highlights the fact that 
there is much to learn about the relationship between eQTL effects 
and disease pathogenesis. This phenomenon is likely also to apply 
to other autoimmune and inflammatory diseases, and further dis-
section should in turn improve the development of TRSs that are 
predictive of progression to complicated disease, with implications 
for therapeutic treatment.

URLs. Blood eQTL browser, http://genenetwork.nl/bloodeqtl-
browser/; GTEx, http://www.gtexportal.org/home/; IIBDGC trans-
ancestry meta-analysis association data, https://www.ibdgenetics.
org/downloads.html; SMR, http://cnsgenomics.com/software/smr/
index.html; coloc R package, https://cran.r-project.org/web/pack-
ages/coloc/index.html; 1000 Genomes Project, http://www.interna-
tionalgenome.org/1000-genomes-browsers; GEO, https://www.ncbi.
nlm.nih.gov/geo/.

MeThODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINe MeThODS
Cohort and outcome classification. The RISK study is an observational pro-
spective cohort study that aims to develop risk models for predicting compli-
cated course in children with Crohn’s disease. From 2008 to 2012, the RISK 
study recruited more than 1,800 treatment-naive patients with a suspected 
diagnosis of Crohn’s disease at 28 pediatric gastroenterology centers in North 
America3,4. This disorder is a chronic inflammatory condition of the gas-
trointestinal tract that results from inappropriate activation of the immune 
system thought to be due to a combination of host genetic makeup, enteric 
flora, and microbial or other pathological triggers. A minority of patients 
progress with time to complicated disease that may require surgery and/or 
intensive pharmacological therapy. We used the Montreal criteria to classify 
patients according to disease behavior, distinguishing non-complicated B1 
disease (non-stricturing, non-penetrating disease) from complicated disease, 
composed of B2 (stricturing) and/or B3 (penetrating) behavior32,33.

We ascertained 245 samples from the RISK study that had been profiled 
with ileal RNA-seq and genotyped with the Illumina high-density Immunochip 
array. 35 of the ascertained individuals lacked gut inflammation and were 
classified as non-IBD controls. The remaining selected individuals showed 
persisting Crohn’s disease and remained in complication-free B1 status for 
at least 90 d from the time of initial diagnosis. After 3 years of follow-up, 17 
and 10 patients progressed to B2 and B3 status, respectively. We joined the 
latter 27 samples to form a group of patients with complicated disease course. 
The majority of individuals were of European ancestry (n = 210; 85.7%), with 
smaller fractions of samples with African (n = 10; 4.1%) and other/mixed  
(n = 25; 10.2%) ancestry. More details about outcome classification are  
available in Kugathasan et al.4.

Along with disease behavior, disease location has a key role in the natural 
history and clinical course of patients diagnosed with Crohn’s disease. Because 
a recent study showed that a GRS for IBD could distinguish patients with ileal/
ileocolonic disease from those with only colonic disease34, we asked whether a 
TRS could also distinguish these two classes of Crohn’s disease. According to 
the Paris modification32 of the Montreal classification, pediatric disease is also 
classified into L1 (ileal only), L2 (colonic only), L3 (ileocolonic) and L4 (upper 
gastrointestinal tract). For Supplementary Figure 4, we combined L1 and L3 
into inflamed B1, as the biopsies were taken from the ileum, whereas L2 was 
uninflamed relative to the site of biopsy. No L4 cases were available. The analy-
sis confirmed that the TRS indeed distinguished L1/L3 from L2 disease.

Processing of RNA-seq data from ileal biopsies and SNP data from the RISK 
cohort. RNA was isolated from ileal biopsies obtained from colonoscopy at 
diagnosis, and profiles of gene expression were determined using RNA-seq as 
previously reported. Reads were mapped to the human genome (hg19) with 
TopHat 2.0.13 using default parameters35. Aligned reads were transformed 
with SAMtools36 to quantify the number of reads at the gene level with HTSeq-
0.6.1 (ref. 37) using default “union” mode. Raw counts were compiled and 
processed with edgeR38 to obtain normalized counts through trimmed mean 
of M-values normalization. An in-house R script was then used to inverse 
rank transform expression estimates for each gene into a standard normal 
distribution with mean 0 and variance 1. For comparison with GTEx, the 
data were further transformed into the reads per kilobase per million mapped 
reads (RPKM) metric39, and 13,769 genes with RPKM >1 and >6 read counts 
in at least ten individuals were retained. The median RPKM per gene in RISK 
and the median RPKM per gene in 53 tissues available from GTEx (GTEx_
Analysis_v6_RNA-seq_RNA-SeQCv1.1.8_gene_median_rpkm.gct; see URLs) 
had a median Spearman correlation of 0.57 (range 0.39–0.88), with the largest 
correlations corresponding to GTEx “Small_Intestine.Terminal_Ileum” (rs = 
0.88), “Colon.Transverse” (rs = 0.79) and “Stomach” (rs = 0.72), confirming 
similarity of the RISK biopsy data to an external bowel data set.

The Immunochip was designed to densely genotype 186 distinct loci con-
taining markers associated at genome-wide significance (P < 5 × 10−8) with 12 
autoimmune and inflammatory diseases, including Crohn’s disease and ulcera-
tive colitis. The array was designed to contain all 1000 Genomes pilot phase 
(September 2009 release) SNPs within 0.1-cM recombination blocks (HapMap 
3 CEU) around the top associated markers by GWAS40. Initial calling of the 
Immunochip array before quality control contained 192,523 variants. We 
used the Bioconductor SNPlocs.Hsapiens.dbSNP.20120608 package41 to map  

autosomal SNPs to GRCh37 and remove (i) non-biallelic variants, (ii) SNPs not 
in Hardy–Weinberg equilibrium (P < 1 × 10−3) and (iii) variants not present 
in the 1000 Genomes Phase 1 variant set (March 2012 release). At this point, 
there were 161,540 remaining SNPs. We further removed 49,253 variants with  
MAF <5% and 10,874 SNPs with missing data rate >1% across all individuals. 
After quality control, there were 101,413 genotyped variants available for analy-
sis, and all 245 individuals presented genotype missing rates <0.1%. To check 
relatedness among samples, we calculated pairwise identity by descent based on 
26,233 SNPs obtained after LD pruning using the PLINK routine “--indep 50 5 2,”  
confirming minimal overall relatedness (PI_HAT < 0.05 for 99.3% of pairwise 
comparisons) with just three pairs of first-degree relatives (PI_HAT > 0.25).

Selection of SNPs and candidate genes associated with IBD by GWAS. 
Because our goal was to uncover genes involved in susceptibility to Crohn’s 
disease, we considered as candidates all genes with a transcription start site 
(TSS) located ±1 Mb with respect to each of the 232 independent GWAS SNPs 
previously associated with IBD10. We examined 7,389 SNP–gene pairs, includ-
ing 6,180 unique candidate genes (32 genes considered per SNP on average, 
range of 5 to 620 genes). The Blood eQTL browser (see URLs) was queried 
to ascertain which genes are under the control of IBD-associated SNPs. We 
observed 163 instances in which the GWAS SNP (n = 129) or a SNP in LD  
(n = 34, at r2 > 0.8 in 1000 Genomes CEU data) acted as an eQTL (FDR < 5%) 
for a candidate gene located <1 Mb from the associated SNP (Supplementary 
Table 1). In total, this resulted in selection of 157 unique genes (6 genes were 
under the control of two different IBD SNPs).

Mapping study in RISK cohort to build the ileal TRS. A fraction of eQTL 
variants are known to act in a tissue-specific manner13. We used the RISK ileal 
biopsies to perform a targeted eQTL study focused on the 7,389 SNP–gene 
pairs. This analysis aimed to confirm whether eQTLs discovered in peripheral 
blood are also present in ileal tissue and to detect ileal-specific eQTLs that can 
be used to pinpoint new candidate pathogenic genes.

We applied several quality control steps to remove batch effects and normal-
ize the matrix of gene expression to carry out the eQTL mapping study. First, 
we performed a sex incompatibility check comparing the sex recorded for 
each individual to the expression of XIST and Y-chromosome genes EIF1AY, 
RPS4Y1, DDX3Y and KDM5D. A heat map based on expression of these five 
genes did not show any sex mismatch. Next, we tried to identify low-quality 
samples using D statistics as done by GTEx13. For each sample, mean correla-
tion of expression with the remaining samples was calculated. All samples 
showed D >0.9 with no obvious visual outliers from the average correlation of 
0.972, and all samples were therefore kept for further analysis.

Finally, supervised normalization procedures were used to remove global 
effects present in the matrix of expression data. The transcriptome shows 
pervasive co-regulation of transcript abundance that leads to modules of 
co-regulated genes that have similar biological functions42. Biological vari-
ables such as disease can also induce massive changes in gene expression (for 
example, thousands of genes are differentially expressed among groups in the 
RISK study4). Moreover, hidden batch effects and other unknown cofound-
ers can induce spurious correlations at the genome-wide level. All these 
sources of biological and/or technical variability can hamper the detection 
of locally acting cis-eQTLs. We first used unsupervised surrogate variable 
analysis (SVA)41 to identify hidden confounding factors, deliberately protect-
ing known variables such as sex and disease status (to be included as covariates 
in the eQTL mapping step). The algorithm detected 14 surrogate variables 
that were removed using the supervised normalization of microarray (SNM) 
procedure42. Specifically, we fit sex and disease status as biological variables 
and removed the effects of the 14 estimated surrogate variables by including 
these as adjustment variables with the rm = T option.

eQTL mapping was performed using a linear mixed model implemented in 
GEMMA43, which allows adjustment for population structure and relatedness 
among individuals as a random effect through a genetic relationship matrix 
(GRM) based on the LD-pruned SNP data set. We tested for associations 
between genotype and normalized gene expression, including sex and disease 
status as covariates. Supplementary Table 2 reports association results for 136 
available SNP–gene pairs (ileal eQTL association data were not available for 
the remaining 21 pairs).
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Gene selection with SMR and coloc. Detection of nominally significant asso-
ciations both for eQTLs and with IBD at a single SNP does not necessarily 
imply that the SNP is responsible for both effects. Several recent methods have 
been designed to increase confidence that colocalization of signals implies that 
the gene affected by the regulatory SNP is also responsible for the trait asso-
ciation. coloc uses a Bayesian framework to infer whether the two signals are 
due to a single site or to two sites in LD within a genomic region of interest15. 
It calculates posterior probabilities to quantify the support for five different 
hypotheses regarding the presence and sharing of causal variants by the two 
traits under consideration. Similarly, SMR combines GWAS and eQTL sum-
mary association data to prioritize target genes with evidence for causal or 
pleiotropic effects17. We applied both methods to ascertain target genes from 
the list of 157 aforementioned candidate genes.

We used GWAS summary data for Crohn’s disease, ulcerative colitis and IBD 
from the publicly available IIBDGC GWAS plus Immunochip trans-ancestry  
MANTRA meta-analyses (see URLs). For each of the three disease phenotypes, 
we processed the data considering the sample size indicated in Table 1 of Liu 
et al.10. For eQTL effects, we used the cis-eQTL summary data from the larg-
est existing immune-related data set, namely the Blood eQTL browser (see 
URLs), and converted the reported z statistics into β and standard error values 
following the guidelines from the SMR Supplementary Note in Zhu et al.17. 
The assigned sample size was 5,311, using Europeans from the 1000 Genomes 
Project as the reference sample for MAF and LD patterns (see URLs). For the 
coloc analyses, we considered as validated target genes 29 independent loci 
with 80% or greater posterior probability of the hypothesis of one causal vari-
ant common to both traits (H4) for all three of the phenotypes. For the SMR 
analyses, Supplementary Figure 3a shows the strong relationship between 
the SMR P value and highly significant P values for both the GWAS and eQTL 
effects. This validates the selection of loci (such as the red and brown dots in 
the figure) that passed Bonferroni correction for all three of the phenotypes 
considered (significance threshold P < 2.3 × 10−4 for one phenotype, as the  
P values are highly correlated). However, it also highlights the likely depend-
ence of the SMR statistic on the significance of the eQTL effects, which in turn 
are strongly influenced by the sample size, as noted by Zhu et al.17. In general, 
inclusion of more high-confidence genes would be expected to improve the 
TRS in part by reducing the variance of the score, and it is therefore likely 
that the small sample size for the ileal eQTL results contributes to its weaker 
diagnostic performance relative to the larger blood-derived gene set. We also 
replicated the case–control comparison with an analysis of 13 of the 26 genes 
recently reported from immune cell-type-specific eQTLs44 for which repli-
cated directional effects could be inferred (∆s.d. = 0.73, P = 3 × 10−5), but, 
again, larger sample sizes will be needed to establish a high-confidence set 
of such genes. Owing to the low density of variants on the Immunochip and 
the likely presence of multiple causal effects at each locus, computation and 
interpretation of SMR’s HEIDI scores was compromised for half of the loci; 
as only four were inferred to be unambiguously causal by this test (P < 2.3 × 
10−4 for the three phenotypes), it was deemed not useful for selection of genes 
for TRS computation. 15 of the loci are common to SMR and coloc, implying 
that the methods are complementary. Summary results for all genomic regions 
considered are available in Supplementary Tables 3 and 4.

In addition, we used coloc to select causal genes among the 27 genes con-
trolled by ileum-specific eQTLs (P < 1 × 10−5) discovered in the mapping study 
described above. To do so, we extended the eQTL mapping study ±500 kb 
around the susceptibility SNP for each of the genomic regions and processed 
the association data to run coloc and SMR on these regions. We considered 
as validated seven target genes that showed H4 >80% for all three of the dis-
ease phenotypes. Because of the low number of loci detected through coloc, 
we complemented the analyses with seven more loci that passed SMR for all 
three phenotypes (Bonferroni-adjusted P < 0.00185 inclusion threshold for one 
phenotype). Summary results are available in Supplementary Table 5.

Calculation of GRSs and TRSs. We carried out several comparisons to 
contrast the predictive power of the TRS with that of the GRS based on the  
corresponding GWAS SNPs (those that act as eQTLs for the selected genes). 
For the GRS, we used the “score” routine available in PLINK to generate a GRSs 
weighted using the log(OR) for IBD from GWAS meta-analysis10 (reported 
in Supplementary Table 1; weighting by the log(OR) for Crohn’s disease  

rendered very similar scores at each comparison). In turn, calculation of the 
TRS consisted of three steps. First, we used the eQTL activity of GWAS SNPs 
to infer the direction of risk at each gene selected for the TRS. We used “High 
Expr.” and “Low Expr.” (available in Supplementary Tables 1–5) to denote 
whether the risk allele associated with disease led to increased (High Expr.) or 
decreased (Low Expr.) gene expression. Next, we polarized expression values 
so that elevated risk, irrespective of the sign of the effect on expression, added 
to the TRS. This was done simply by changing the sign of the z score for genes 
labeled as Low Expr. (for example, expression z scores of −1.5 and +1.3 would 
transform into +1.5 and −1.3, respectively). Finally, we obtained the TRS for 
each individual by summing the polarized z scores over all genes and rank 
normalizing the distribution. We used t tests to compare the performance of 
the GRS and TRS between groups.

Calculation of PRSs. PRSs have emerged as the gold standard for overall pre-
diction from GWAS. We used the P+T (pruning + threshold)8 method to build 
PRSs based on independent SNPs that passed different significance thresholds 
in GWAS analysis. To avoid loss of power due to the inclusion of correlated 
SNPs, we first selected 15,135 LD-pruned SNPs from the RISK Immunochip 
data (by running PLINK’s indep-pairwise routine on 5,000 randomly selected 
individuals from the UK Biobank). Then, we used PLINK’s score routine to 
calculate a battery of PRSs based on variants selected across the complete spec-
trum of significance thresholds for inclusion (from 329 SNPs at P < 0.00001 to 
9,214 SNPs at P < 0.5) in the IIBDGC GWAS plus Immunochip trans-ancestry 
MANTRA meta-analyses for IBD (see URLs). The performance of the PRSs for 
both the case–control comparison and the indolent disease–complicated dis-
ease comparison at different thresholds is reported in Supplementary Figure 6.  
The performance of the PRSs between groups was tested through t tests.

Coherence and incoherence. For the evaluation of coherence between eQTL 
and disease effects, we first evaluated whether each transcript was significantly 
differentially expressed between control and Crohn’s disease samples by at least 
0.3 s.d. units (P ~0.05). Despite the small sample size of controls, clear co- 
regulation of the upregulated (Fig. 3c,e) and downregulated (Fig. 3d,f) genes is 
clearly visualized. Next, we classified as coherent genes for which the direction 
of the eQTL effect was the same as the effect for the disease (that is, increased 
expression of the risk allele as well as elevated expression in cases relative to 
controls or decreased expression of the risk allele and repressed expression 
in cases). Incoherent genes were those with the opposite relationship (that is, 
either increased expression of the risk allele and repression in cases or vice 
versa). Stable genes were those without clear differences in expression between 
cases and controls.

Whereas our initial proposal for the TRS assumed no global impact of dis-
ease on gene expression2, the RISK data set showed that fewer than half of the 
candidate genes were stable by the above definition. Coherence mathematically 
tended to enhance the performance of the TRS as it elevated the difference 
between cases and controls for each gene. By contrast, incoherence diminished 
TRS performance as the polarized eQTL effect was counteracted by the influ-
ence of disease. Because there was an excess of incoherent associations for 
ileal eQTLs, the TRS performance was compromised. However, as there was 
no global difference in expression of the GWAS candidate genes between B1 
cases and complicated B2/B3 cases, coherence and incoherence did not affect 
the ability of the TRS to discriminate these conditions.

Functional evidence from the ImmVar project. We used data from the 
ImmVar project (GEO accession GSE60235) to gain further insight into the 
coherent and incoherent behaviors detected for some genes included in the 
TRS. The data set includes expression profiling with the Affymetrix Human 
Gene 1.0 ST array of resting and activated T cells from 15 healthy human indi-
viduals collected under five different conditions29. We downloaded the matrix 
of normalized gene expression and selected experiments corresponding to 
three conditions, namely “Unstimulated 4hr” (n = 15), “Activated 4hr” (n = 15)  
and “Activated 48hr” (n = 15). For each gene of interest, we transformed 
expression estimates into a standard normal distribution with mean 0 and 
variance 1 and performed pairwise comparisons to explore the changes in 
gene expression at 4 h and 48 h after stimulation with anti-CD3 and anti-
CD28 beads. The changes in average z score for the selected genes are reported  
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in Figure 4. We observed similar patterns for both coherent and incoherent 
genes analyzing a similar ImmVar project that profiled changes in monocyte-
derived dendritic cell gene expression after stimulation with LPS or influenza 
(GEO accession GSE53166)45.

Data availability. The RNA-seq data for the 245 individuals included in this 
study have been deposited in the Gene Expression Omnibus (GEO) and are 
accessible through GEO series accession GSE93624. A Life Sciences Reporting 
Summary is available.

32. Levine, A. et al. Pediatric modification of the Montreal classification for inflammatory 
bowel disease: the Paris classification. Inflamm. Bowel Dis. 17, 1314–1321 
(2011).

33. Satsangi, J., Silverberg, M.S., Vermeire, S. & Colombel, J.F. The Montreal 
classification of inflammatory bowel disease: controversies, consensus, and 
implications. Gut 55, 749–753 (2006).

34. Cleynen, I. et al. Inherited determinants of Crohn’s disease and ulcerative colitis 
phenotypes: a genetic association study. Lancet 387, 156–167 (2016).

35. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of 
insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

36. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 
25, 2078–2079 (2009).

37. Anders, S., Pyl, P.T. & Huber, W. HTSeq—a Python framework to work with high-
throughput sequencing data. Bioinformatics 31, 166–169 (2015).

38. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for 
differential expression analysis of digital gene expression data. Bioinformatics 26, 
139–140 (2010).

39. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and 
quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 
(2008).

40. Onengut-Gumuscu, S. et al. Fine mapping of type 1 diabetes susceptibility loci 
and evidence for colocalization of causal variants with lymphoid gene enhancers. 
Nat. Genet. 47, 381–386 (2015).

41. Leek, J.T., Johnson, W.E., Parker, H.S., Jaffe, A.E. & Storey, J.D. The sva package 
for removing batch effects and other unwanted variation in high-throughput 
experiments. Bioinformatics 28, 882–883 (2012).

42. Mecham, B.H., Nelson, P.S. & Storey, J.D. Supervised normalization of microarrays. 
Bioinformatics 26, 1308–1315 (2010).

43. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association 
studies. Nat. Genet. 44, 821–824 (2012).

44. Chun, S. et al. Limited statistical evidence for shared genetic effects of eQTLs and 
autoimmune-disease-associated loci in three major immune-cell types. Nat. Genet. 
49, 600–605 (2017).

45. Lee, M.N. et al. Common genetic variants modulate pathogen-sensing responses 
in human dendritic cells. Science 343, 1246980 (2014).

©
 2

01
7 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53166
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93624 


1

nature research  |  life sciences reporting sum
m

ary
June 2017

Corresponding author(s): Greg Gibson

Initial submission Revised version Final submission

Life Sciences Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life 
science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list 
items might not apply to an individual manuscript, but all fields must be completed for clarity. 

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research 
policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist. 

    Experimental design
1.   Sample size

Describe how sample size was determined. No sample size calculation was performed. We used the samples available from the 
RISK study, an inceptional prospective cohort without a predicted target regarding 
sample size (all pediatric individuals with symptoms of Crohn's disease were 
sampled at 28 clinics over a period of three years). 

2.   Data exclusions

Describe any data exclusions. No data or sample was excluded. We used the 245 samples from the RISK study 
that had i) RNA-Seq available, ii) SNP data available and iii) had been profiled over 3 
years (as described in Kugathasan et al., Lancet, 2017)

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

We performed a single replication attempt, as described in the main text 
("Applying the approach to an independent sample of peripheral blood gene 
expression, the TRS also distinguished 61 pediatric Crohn’s disease cases and 12 
controls (∆SD=1.2; P=4×10-5)."

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Samples were allocated into three different groups: i) non-IBD controls; ii) CD 
patients that remain in B1 status over a three year period and iii) CD patients that 
developed either B2 and/or B3 complications in the window from 90-days after 
diagnosis to 3-year after diagnosis. No covariates were controlled for. The details 
are available in the 1st/2nd paragraph of the Online Methods.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Blinding was not considered, given that group allocation had been previously done 
previous to this study by the investigators from the RISK study (Kugathasan et al. 
Lancet, 2017) 

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

Nature Genetics: doi:10.1038/ng.3936
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

For all our analyses we used the R software environment for statistical computing

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

All used samples are available for public use (SNP data is available upon contact 
with corresponding author)

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No eukaryotic cell lines were used

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

No animals were used

Nature Genetics: doi:10.1038/ng.3936
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Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

All used samples belong to the cases of pediatric Crohn's disease previously 
reported in Kugathasan et al. (Lancet, 2017).

Nature Genetics: doi:10.1038/ng.3936
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