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A Burden of Rare Variants Associated with Extremes
of Gene Expression in Human Peripheral Blood

Jing Zhao,1 Idowu Akinsanmi,1 Dalia Arafat,1 T.J. Cradick,2 Ciaran M. Lee,2,3 Samridhi Banskota,1

Urko M. Marigorta,1 Gang Bao,2,3 and Greg Gibson1,*

In order to evaluate whether rare regulatory variants in the vicinity of promoters are likely to impact gene expression, we conducted a

novel burden test for enrichment of rare variants at the extremes of expression. After sequencing 2-kb promoter regions of 472 genes in

410 healthy adults, we performed a quadratic regression of rare variant count on bins of peripheral blood transcript abundance from

microarrays, summing over ranks of all genes. After adjusting for common eQTLs and the major axes of gene expression covariance,

a highly significant excess of variants with minor allele frequency less than 0.05 at both high and low extremes across individuals

was observed. Further enrichment was seen in sites annotated as potentially regulatory by RegulomeDB, but a deficit of effects was asso-

ciated with known metabolic disease genes. The main result replicates in an independent sample of 75 individuals with RNA-seq and

whole-genome sequence information. Three of four predicted large-effect sites were validated by CRISPR/Cas9 knockdown in K562 cells,

but simulations indicate that effect sizes need not be unusually large to produce the observed burden. Unusually divergent low-fre-

quency promoter haplotypes were observed at 31 loci, at least 9 of which appear to be derived from Neandertal admixture, but these

were not associated with divergent gene expression in blood. The overall burden test results are consistent with rare and private regu-

latory variants driving high or low transcription at specific loci, potentially contributing to disease.
Introduction

In recent years, whole-exome sequencing has been used

effectively to demonstrate that there is a burden of rare

coding variants in individuals with a variety of neurolog-

ical and developmental conditions.1–4 Considering esti-

mates that as many as 90% of disease-associated common

variants are regulatory rather than structural,5–7 it is

reasonable to assume that rare regulatory variants influ-

encing the expression of causal genes might also be en-

riched in individuals with congenital abnormalities or

common chronic diseases. Here we demonstrate that there

is a burden of rare variants with gene expression itself,

focusing on just the promoter regions of a targeted set of

genes whose expression was measured by microarray anal-

ysis of peripheral blood samples.

Our strategy, outlined in Figure 1, gains statistical power

by pooling rare variant enrichments across the full range of

expression of 472 genes measured in 410 individuals. This

effectively generates almost 200,000 data points, but

instead of focusing on just the most extreme individuals

as required by burden tests designed for case-control com-

parisons,8–11 we evaluate the shape of the distribution of

cumulative counts of rare variants in equal sized bins

of expression. For each gene in each individual, 2 kb of

DNA sequence flanking the annotated transcription start

site was sequenced after targeted capture of genomic

DNA on custom beads.12 The count of rare variants

with minor allele frequency less than 5% (or 1%) was as-

sessed after alignment to the HuRef19 reference human

genome with the Unified Genotyper in GATK.13 These
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counts were summed for 82 equal sized successive gene

expression bins with 5 individuals each, and then tallied

for all 472 genes.

Under the null hypothesis, there should be no relation-

ship between rare variant count and gene expression and a

plot of rare variant count on the y axis against expression

bin on the x axis should yield a horizontal regression line.

In the presence of rare variants that decrease expression,

there should be larger counts in the low expression bins,

toward the left in the plots in Figure 2, and similarly rare

variants that increase expression should yield larger

counts in the higher expression bins to the right. A general

bias toward either effect would result in a significant linear

slope term in a regression model. However, if both effects

are present, a characteristic ‘‘smile’’ plot would ensue, the

significance of which would be reflected in the quadratic

term of a regression. We further assessed departure from

the null by evaluating the significance of the complete

quadratic model relative to 10,000 permutations of the

full genotype and gene expression matrices, subsequently

adjusting for various covariates to gain further insight into

the nature of the burden of rare variants for extreme

expression.

Although deleterious coding variants are generally loss

of function, deleterious regulatory variants have similar a

priori probabilities of increasing or decreasing transcript

abundance. In fact, evolutionary studies14,15 imply that

gene expression is generally subject tomoderate stabilizing

selection, which acts to maintain transcript levels close to

an optimal level. Thus, it is unlikely that many large effect

mutations remain in the gene pool for extended periods of
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Figure 1. Schema Showing the Pooling Strategy to Evaluate Rare Variant Enrichment
For each gene, the normalized gene expressionmeasures across all 410 individuals are sorted into 82 bins, resulting in somewhat normal
frequency distributions shown in the top panels. Subsequently, the number of rare variants in the 2-kb promoter of each allele in that bin
is tallied: for example, there are 2, 1, 0, 0, and 1 rare variants in the promoters of the 5 individuals (both alleles) in the second bin for gene
1, summing to 4, whereas the second bin for gene 2 has 3 rare variants. These expression bin rare allele counts are then summed over all
472 genes and plotted from lowest to highest bin to yield plots at the bottom of the figure that represent two alternative results. In the
absence of a burden of rare variants at the extremes, there is neither a significant slope nor quadratic fit (left plot), whereas an excess of
variants at both extremes produces a concave ‘‘smile’’ regression (right plot). If there were an excess at only the low or high expression,
the linear slope would be significant.
time, because purifying selection ensures that only moder-

ate effect alleles persist. One class of haplotype that is

particularly interesting in this regard is the few percent of

alleles that can be traced to introgression from Neandertal

or Denisovan populations.16–18 Although divergent at the

genotype level and occasionally associated with extreme

traits such as high-altitude adaptation,19 the maintenance

of such haplotypes over several tens of thousands of gener-

ations leads to the expectation that they are not likely to
300 The American Journal of Human Genetics 98, 299–309, February
collectively influence gene expression, a proposition that

we also test here.
Material and Methods

Targeted Promoter Sequencing
DNA was obtained from 410 participants in the Atlanta CHDWB

study,20,21 under approval of the Emory University and Georgia
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Tech IRBs for genetic studies, and including written informed con-

sent. The 410 samples comprised 274 females and 136 males, and

included 297 individuals of European ancestry, 95 of African

ancestry, and 18 of Asian ancestry. The age at entry into the pro-

gram and initial sampling of blood spanned from 19 to 83 with

a mean of 50.

A set of 500 genes was initially chosen for targeted promoter

sequencing, but 28 of these located in the HLA complex were

removed due to irregular read counts in the complex, resulting

in a set of 472 genes that were included in the study. The full list

is included as Table S1, and metrics of sequence quality along

with a list of all promoter variants is available as additional mate-

rial at the author’s website (see Web Resources). Among the 472

genes, 207 have common cis-eQTL, 244 are represented on the

Metabochip, and 220 are represented on the Immunochip, 145

of which are on both chips.

Whole-genomic DNA was isolated from buffy coats using Flexi-

gene DNA kits (QIAGEN). The location of the major transcription

start site (TSS) of each gene was extracted from the UCSC Genome

Browser (accessedMay 2012), and oligonucleotide probes were de-

signed with the Illumina Design Studio so as to pull down 1 kb up-

stream and 1 kb downstream of the major TSS for each of the

472 genes. 50-mer oligonucleotide probes were designed to ensure

that the percentage of the total length of all regions targeted for

enrichment was not less than 90%. Sequence capture libraries

were generated and pooled with Illumina TruSeq DNA Sample

Preparation Kits and TruSeq Custom Enrichment Kits. Paired end

100 bp sequencing was then performed on an Illumina HiSeq

2500 at Georgia Tech. Approximately 75% of the aligned reads

with BWA mapped to the 2-kb promoter regions of the 472 genes,

indicating good enrichment to the targeted regions. The average

read depth across the dataset was more than 6003, with more

than 90% of the reads in the 2-kb promoter regions having more

than 203 read depth.
Variant Calling
After short read alignment, a variety of different strategies for

variant calling were evaluated and contrasted, leading to the deci-

sion to use the output of the GATKUnified Genotyper algorithm13

applied to all samples in a pooled analysis. First, the BWA aligner

was used to align fastq files to HuRef19. The total number of

aligned reads per sample ranged from approximately 2 million

to 40 million, with a mean of 14 million and standard deviation

of 5 million. The mapped reads proportion was between 94.1%

and 99.9% with a mean of 99.3% and a standard deviation of

1.05%. The percentage of concordantly paired reads ranged from

92.9% to 98.9% with a mean of 97.9% and a standard deviation

of 1.2%. The GATK VQSR tool was used for variant filtering using

the Illumina Omni chip array based on the 1000 Genomes Project

as the training data with the highest-confidence SNPs from the

1000 Genomes Project’s call set used to validate the SNPs, utilizing

a machine learning approach to optimize cutoffs for QD (quality

by depth ratio), FS (Fisher’s exact test of strand bias), MQ (mapping

quality metric), HaplotypeScore, MQRankSum (Mann-Whitney

rank sum test for mapping qualities), and ReadPosRankSum

(Mann-Whitney rank sum test for the distance of reads with the

alternate allele to the end of the read).

After variant calling, we detected 17,584 raw SNPs in total, but

these were reduced to 10,451 SNPs passing the filters, that lie

within the 2-kb promoter regions of 472 genes. 8,833 of the

SNPs are rare (defined as MAF < 0.05 in our dataset, which is
The Americ
concordant with 1000 Genomes frequencies) and 1,618 are com-

mon (with MAFR 0.05), which averages 1.5 rare variants per pro-

moter per individual. Approximately 60% of these rare variants are

private, meaning that they were observed in only a single individ-

ual. The number of rare, common, and private SNPs per gene,

along with an estimate of the polymorphism rate (p) per gene in

the 2-kb sequenced region, as well as a matrix of rare allele counts

per gene in each individual are available at the author’s website.
Verification by Sanger Sequencing and Genotyping
To verify the accuracy of the high-throughput sequencing, we

Sanger sequenced 500 bp segments of two genes, TRAF3IP3

(OMIM: 608255) and HSPA8 (OMIM: 600816). The sequenced re-

gion of TRAF3IP3 was chr1: 209,929,132–209,929,708, in which

two rare SNPs and four common SNPs were observed in the 410

samples. All of these were included in 96 samples that were Sanger

sequenced, and all were validated. The sequenced region of HSPA8

was chr11: 122,932,665–122,933,158, which contained 18 rare

and 5 common SNPs in the 96 sequenced samples, which were

again verified by Sanger sequencing. A handful of other individ-

uals were nominally positive at some of the rare sites, but manual

inspection of the traces revealed poor-quality sequence toward the

ends of the reads in those individuals suggesting a false positive

rate that in any case would be less than 0.5%. No other variants

that were not present in the GATK analysis were called with

high confidence by Sanger sequencing, whereas all common vari-

ants were also validated by the Sanger sequencing.

Whole-genome genotypes either from Illumina OmniExpress or

CoreþExome arrays, imputed onto 1000 Genomes with

Impute2,22 were also available for the majority of individuals.

Extremely high concordance was observed. These genotypes

were thus used for common variant eQTL analysis, which will be

described in detail elsewhere. We also interrogated whether rare

SNPs lie within the Illumina probes, but found just three examples

in two genes, so these do not explain enrichment of rare variants

downstream of the promoter with gene expression.
Gene Expression Profiling
Transcript abundance measures were generated in two batches us-

ing Illumina-HT12 human gene expression arrays. RNA was pre-

pared from whole-blood samples collected and stored in Tempus

tubes (Life Technologies), according to manufacturer-recommen-

ded protocols, and quality was confirmed with an Agilent Bio-

analyzer such that all samples had RIN numbers greater than 8.

The first batch of samples was processed for hybridization and

bead intensity extraction by Expression Analysis and the second

by HudsonAlpha. The raw data are available at the Gene Expres-

sion Omnibus (GEO) but additional data processing steps were

employed for this study to account for batch effects that might

have skewed the rare variant association statistics.

Raw expression data in the form of average bead intensities from

the Illumina Genome Studio were first transformed to log2 values

and then processed with two standard approaches for removing

surrogate variables. For PEER analysis23 of the Europeans only

(Figure S1A), batch effects were removed with ComBat,24 and

then age and gender were fit in a general linear model, before

fitting the PEER algorithm with 20 factors selected, 6 of which

were notably stronger than the remainder. As an additional

mode of analysis, surrogate variable analysis (SVA),25 we con-

sidered the full dataset, after removing batch effects with

COMBAT, then used SVAwith age as the biological variable, fitting
an Journal of Human Genetics 98, 299–309, February 4, 2016 301



a single surrogate variable identified by the open source R code.

Because ethnicity still explained 9% of the variance and age and

gender each approximately 0.5%, we removed these as linear

terms, then extracted just the 279 European-ancestry samples for

rare variant enrichment tests as described below, generating very

similar results as with PEER. However, for most analyses reported

below, we used normalization based on supervised normalization

of microarrays (SNM) algorithm in R,26 without fitting the surro-

gate variables. We fit age as the biological variable and removed

effects of batch and ethnicity by including these as adjustment

variables with the rm ¼ True option. Individual effects were ac-

counted for as the intensity-dependent variable.

We next extracted the 472 genes for which we have promoter

genotypes and averaged the estimates for 172 genes that are repre-

sented by two (132 genes) or more (40 genes) probes in the Illu-

mina-HT12 arrays. Each gene expression distribution was then

transformed to the same scale, namely to z-scores, which are stan-

dard normal distributions with amean of 0 and standard deviation

of 1. To ensure that there was no overall batch effect on the vari-

ances (namely, that individuals from one batch are not, for tech-

nical reasons, more likely to have extreme values), we fit the

z-scores by batch and combined them into a single gene expres-

sion dataset that was used to generate all of the results reported

here. Quantile normalization27 was also performed in parallel

(Figure S1B) because it is commonly used in the literature. Quan-

tile normalization ensures that the distribution of abundance esti-

mates of the entire gene expression profile of each individual is the

same but does not ensure adjustment of covariates influencing

the variance (or average expression) of each gene. It was applied

to the raw log2 distributions of each individual, and probes for

the same gene were again averaged prior to assigning genes to

expression bins for the regression on rare variant counts.
Rare Variant Burden Test
In order to evaluate whether there was a relationship between

transcript abundance and number of rare variants in the promoter,

for each gene, each individual was placed in one of 82 equal-sized

bins of five individuals based on the rank of the batch-adjusted z-

scores.We then tallied the number of rare variants in the promoter

regions of those five individuals and subsequently summed the

rare variant counts across all 472 genes to achieve statistical power

to detect the overall burden. With a MAF cutoff of 0.05, only 1 ho-

mozygote is expected per gene, but because most rare variants are

rarer than this, the actual number of homozygotes is too small to

impact the sums, but they were counted twice in the tally at the

gene level. The bin size was chosen as a compromise between

smooth fitting of the quadratic regression and compensating for

noise in individual gene expression measures assessed by microar-

ray. However, additional analyses were performed with 41 bins of

size 10 individuals (Figure S1E) or with MAF < 0.01 (Figure S1F),

neither of which had a meaningful effect on the conclusions

because both remain highly significant for enrichment at both ex-

tremes. We then evaluated the deviation of the distribution from

the null hypothesis of no relationship by fitting a quadratic model

where the linear term captures bias toward enrichment for either

higher or lower expression and the quadratic term captures the ef-

fect of bias at both extremes simultaneously.

The significance values of the two terms were observed to be

very similar to the empirical p values obtained by permuting the

sum counts against the bin number. We also performed a more

robust permutation to shuffle the genotype and gene expression
302 The American Journal of Human Genetics 98, 299–309, February
vectors, keeping the full vector of promoter counts within each in-

dividual (and the full vector of expression ranks) constant so as to

preserve any biological covariance. With the appropriately

normalized gene expression data, such permutations generally re-

sulted in flat regressions of allele count on expression bin, with

non-significant linear and quadratic terms. We then evaluated

the significance of the actual data by documenting howmany per-

mutations out of 10,000 have a more significant overall model fit,

which is just a few cases, strengthening support for the inference

(1) that the normalization has removed systematic biases and (2)

that there is a true burden of rare variants at either extreme of

the transcript distribution, averaging across 472 transcripts.

A further adjustment was made to account for unequal total

read counts among individuals or in specific genes as follows.

For the analyses involving mixed races, we performed a haplotype

burden analysis by collapsing all multi-SNP promoters down to a

count of 1, instead of the actual number of rare variants. This

should be conservative because it will tend to underestimate the

contributions of two or more variants in a single promoter. We

also fit a ‘‘joint’’ analysis (Figure S1C) where instead of binning

gene expression solely within individuals, we generated 82 bins

of 2,100 gene expression measures (5 3 420), based in the ranked

z-scores of all genes in all individuals, and performed the regres-

sion on the summed allele counts associated with the 2,100

measures. In this procedure, each gene contributes slightly dispro-

portionately to each bin, yet the overall result was again retained.
Adjustment of Rare Variant Burden Test for Covariates
A variety of biological factors could mask the effect of rare variants

by increasing the variance of gene expression. Two obvious effects

are the contribution of common eQTLs, which will tend to cause

individuals with the less active polymorphism to be in lower

expression bins, and trans-acting sources of gene expression

covariance. Because peripheral blood preserved in Tempus tubes

is a complex mixture of leukocytes (residual red blood cell and

platelet gene expression is thought not to contribute strongly to

observed transcript abundance), an obvious source of covariance

is cell counts. Cell counts (lymphocytes, monocytes, neutrophils,

erythrocytes, and platelets) explain on average just 6.0% of the

variance of each transcript abundance measure in our dataset,

which is actually one quarter of the amount explained by seven

empirically determined common axes of covariance (average

23.8%: compare Figures S2A and S2B for distributions of variance

explained). These axes probably reflect a mixture of the contribu-

tions of cell counts and coordinate gene regulation for example by

interferon or other systemic factors. The seven axes are defined by

the first principal component of the expression of ten ‘‘blood

informative transcripts (BITs)’’ per axis, where the BITs have

been defined by comparison of multiple blood gene expression da-

tasets.28 Note that fitting PC1 to the 5 or 100 most correlated tran-

scripts in each axis results in almost identical axis scores.

Simple linear regression was used to fit both eQTL and co-

expression axes. For the eQTL adjustment, we first performed

whole-genome cis-eQTL analysis on the full CHDWB dataset and

identified significant eQTLs located within 5 kb of the TSS or in

the gene body for 207 of the 472 genes at p < 10�4, observing

more than 70% overlap with the blood eQTL browser variants

derived from meta-analysis of more than 5,000 samples.29 For

approximately one fifth of the genes, multiple additional cis-

eQTLs were observed conditioned on the primary eQTL. We

used stepwise linear regression to fit these empirical eQTLs in
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our dataset, also including age and sex as covariates in the model

(although neither age nor sex account for more than a few percent

of the variance of any of the 472 genes). The residuals from the

eQTL fit were then used for axis adjustment, for which we

computed the seven PC1 scores from the full SNM normalized

gene expression matrix, and then identified which axis was most

strongly correlated with the expression of each gene (8,654 were

influenced by an axis at p < 10�5, including 398 of the 472 genes

included in the enrichment analyses). Univariate linear regression

was then used to fit the relevant axis for each gene, yielding gene

expression residuals that were taken forward to the adjusted

burden test.
Partitioning the Sources of Rare Variant Burden on

Gene Expression
Several potential modifiers of the rare variant contribution were

evaluated by dividing the total European ancestry dataset into sub-

sets and comparing the model fit. For example, to evaluate

whether suspected regulatory sites are more likely to harbor rare

variants, we downloaded the RegulomeDB30 assignments for

each SNP and contrasted sites with scores in the ranges 1–4 (likely

regulatory) or 5–7 (weak or no evidence for regulatory potential).

Similar analyses reported in Table S1 contrast SNPs upstream

and downstream of the TSS; SNPs in genes in the upper or lower

halves of the overall average transcript abundance spectrum;

SNPs in genes in the upper or lower halves of the average promoter

polymorphism distribution; SNPs in genes with or without com-

mon eQTLs; and SNPs in genes represented on the Metabo-

chip,31 Immunochip,32 or neither. For each comparison, we report

the significance of the quadratic term and the linear term as well as

the overall model fit alongside the average number of rare variants

per gene in the two samples being compared.
Assessment of Archaic Origins of Haplotypes
Because 289 of the promoter sequences in the European ancestry

samples (0.2%) have three or more substitutions relative to the

reference human genome, we asked whether they might be

derived from archaic genomes. For each of the 472 genes, vcftools

v.3.033 was used to query the online sequences of the Neandertal

individual from an Altai Mountain cave34 and the Denisovan indi-

vidual from the same cave.35 62 of the genes were not covered in

the sequence. For the remaining 410 genes, we identified 195

positions where one of the 7,779 polymorphisms in our European

individual promoter sequence set matched either of the archaic ge-

nomes rather than HuRef19. 75 genes had haplotypes with 3 or

more sites different from HuRef19; of these, 18 had haplotypes

matching a Neandertal haplotype. 31 genes had haplotypes with

4 or more sites different from HuRef19; of these, 8 had haplotypes

matching a Neandertal haplotype. In several cases, a Denisovan

haplotype was similar to the Neandertal one, but the Neandertal

matched the human sequences, so as expected all archaic alleles

identified in our dataset are most likely of Neandertal origin.

Table S2 shows the genotypes of the 22 individuals with archaic

haplotypes in the 8 genes with 4 or more divergent sites.

The expected proportion of Neandertal alleles genome-wide is

between 1% and 2%, which is an order of magnitude greater

than the proportion observed in our data. A very conservative

lower bound on the proportion of divergent Neandertal promoters

is 67 of 289 haplotypes, or 0.06% of all promoters. Including pro-

moters with just 2 non-reference sites, approximately 10% of

which match a Neandertal allele, this proportion rises to 0.1%.
The Americ
Single divergent sites at least double this proportion again. But

owing to the possibility of recurrent mutation and recombination,

we chose not to include such sites in analysis of association of

Neandertal alleles with gene expression, because they need to be

assessed by reference to long-range archaic haplotype blocks. It

should also be noted that the Altai individual represents only a

fraction of all archaic polymorphisms. Our observed proportion

of Neandertal-derived alleles in the divergent promoters, at least

20%, can be considered to be within the expected range given

that some alleles are also related to rare haplotypes observed in

the African-ancestry individuals and might have been retained

from the out-of-Africa dispersal.
Replication Dataset
In order to replicate the rare variant enrichment on a completely

independent dataset generated with different gene expression

and genotyping technologies, we identified a small cohort of 75

individuals with whole-genome sequence and whole-blood RNA-

seq at the Duke Center for Human Genome Variation (D.B. Gold-

stein, P.I.). Most of these individuals are from a schizophrenia

study. Permission to perform genetic analysis was obtained under

IRB approval of Duke University, affirmed by the Georgia Tech IRB,

and written informed consent was obtained from all study sub-

jects, their parent/guardian, or legally authorized representative.

Analysis of the principal components of the genotypes indicated

that the sample includes 49 individuals of African ancestry, 24

of European ancestry, and 2 of Asian ancestry.

Whole-genome sequences were obtained on Illumina Hi-

Seq2000 automated DNA sequencers and genotypes were called

individually with the GATK algorithm. RNA-seq of whole blood

preserved in Tempus tubes was performed also by paired end

100 bp sequencing on the Illumina platform. Raw read counts

were log2 transformed and mean centered, and linear regression

fitting each of the seven axes of variation (represented by PC1 of

the blood informative transcripts) as well as the overall PC1 of

gene expression variation (which is correlated with genetically

determined ancestry). Subsequently, we assigned the rank of

each gene in each individual and performed quadratic regression

of the total number of individuals with at least one rare allele

count for the gene (MAF< 0.05) in each of 75 ranks. That is, rather

than pooling five individuals per bin, the analysis was essentially

on bin sizes of 1, necessitated by the small sample of individuals.
Experimental Validation of SNP Effects by Genome

Editing
Four SNPs were chosen for experimental validation by CRISPR/

Cas9-mediated genome editing.36 Two (chr6: 24,667,167 in

TDP2 [OMIM: 605764] and chr20: 33,999,719 in UQCC1

[OMIM: 611797]) were associated with loss of gene expression

and two (chr5: 54,603,837 in DHX29 [OMIM: 612720] and

rs182080358 in COMMD4 [HGNC: 26027]) with gain of gene

expression in the CHDWB targeted sequencing analysis

(Table S3). These four sites were all present as private alleles in

one individual and were in the outlier set for an effect size greater

than 2 SDs, visible in Figure 2A. For each SNP, we generated 11 or

12 independent approximately 10-cell K562 clones targeted by

guide RNAs. Although K562 cells are erythroleukemic, rather

than lymphoid or myeloid, because the variants are promoter

proximal, we reasoned that they might have effects generally on

transcript abundance and this cell line is well established for

CRISPR experiments. Each promoter region in the cell line was
an Journal of Human Genetics 98, 299–309, February 4, 2016 303



Figure 2. Relationship between Rare Variant Counts and Tran-
script Abundance
Each plot shows the cumulative number of rare variants in equal
sized bins across the indicated number of genes and individuals,
with lowest expression bin to the left and highest to the right.
Lines indicate the best fit quadratic model.
(A) 472 genes in 410 individuals of mixed ethnicity (5 individuals
per bin), gene expression data normalized by SNM with variance
adjustment (whole model R2 ¼ 0.19, p ¼ 0.0003).
(B) 472 genes in 279 Europeans (93 bins of 3 individuals) after
removing effects of common eQTLs and conserved axes of covari-
ation (R2 ¼ 0.17, p ¼ 0.0003).
(C) 4,633 genes in 75 replicates after removing effects of conserved
axes of covariation and PC1 (R2 ¼ 0.49, p ¼ 2 3 10�11).

304 The American Journal of Human Genetics 98, 299–309, February
re-sequenced to confirm that it is homozygous for the reference

allele, also as reported for the publically available K562 sequence.

DNA oligonucleotides containing a G followed by 19-nt guide

sequence were kinased, annealed, and ligated into pX330 (gift

from Feng Zhang, Addgene plasmid #42230). The four guide

RNAs were COMMD4, 50-GCGCCAAGAAGCCAGGGCCC-30;
DHX29, 50-GCTCTCACTGCTCCCAAAAA-30; TDP2, 50-GTGCGCA

GGCGCCTGTGTCA-30; and UQCC, 50-GGTGAAGGAGTAATTTT

CTA-30. Once constructed, the plasmids were sequenced to

confirm the guide strand region using the primer CRISPR_Seq

(50-CGATACAAGGCTGTTAGAGAGATAATTGG-30). K562 cells

(1 3 106) were transfected by nucleofection with 1 mg CRISPR

plasmid construct for COMMD4, DHX29, TDP2, or UQCC and

300 ng of pmaxGFP, according to manufacturer’s recommended

protocol (Lonza). GFP expression was analyzed 72 hr after trans-

fection at which time DNA and RNA were prepared from pooled

cells for preliminary analysis.

After a period of 4 to 10 days of growth, transfected cells were

sorted by fluorescence activated cell sorting (FACS) and GFP-posi-

tive single cells or 10-cell colonies were sorted into 96-well plates.

These were allowed to incubate for 2–4 weeks or until confluent

and then subjected to T7E1 mutation detection assay37 in which

the region of interest was amplified and 200 ng of purified PCR

product was re-annealed and digested with T7 endonuclease 1.

Cleavage was confirmed by the appearance of reduced molecular

weight bands on 2% agarose gels that were quantified by ImageJ

in order to estimate the fractional heterozygosity.

After confirming disruption of each relevant SNP by the T7E1

assay, five clones were chosen for each of the four genes with

average heterozygosity between 16% and 23%. Droplet PCR,38

which is capable of detecting a 20% modulation of gene expres-

sion, was used with HPRT (OMIM: 308000) as a uniform control

gene in all analyses, with UQCC as a second control for TDP2

and DHX29, and with TDP2 as the second control for UQCC and

COMMD4 disrupted clones. In each experiment we contrasted

the relative expression of the knocked out gene in the five clones

to its average expression in five clones carrying a knockout of

another gene (that is, TDP2 for DHX29 and vice versa; UQCC for

COMMD4 and vice versa), performing a t test of the comparison.

Differential expression was computed by formulating the ratio

of each ddPCR count for the gene of interest to each reference

gene, normalizing these ratios such that the average in the control

cells was 1, then averaging the ratios to the two references. The

average and significance of the change in expression is reported

in Table S3 and Figure S3, which shows the proportional reduction

or gain in signal for the five clones of each type, measured in two

technical replicates of each clone.
Results

Figure 2A illustrates the core result that there is enrichment

of rare variants for both increased and decreased gene

expression in the full sample (model R2 ¼ 0.19, p ¼
0.0003, permutation p ¼ 0.0002). This is true for a variety

of modes of normalization of the gene expression data

detailed in the Material and Methods section, including a

conservative strategy involving removal of batch effects

with Combat24 followed by fitting age and gender followed

by fitting PEER factors23 to just the European-ancestry in-

dividuals (Figure S1A), simple quantile normalization27
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(Figure S1B), surrogate variable analysis,25 and an

approach that first pooled the z-scores for all of the gene

expression measures before assigning bins (Figure S1C).

In subsequent analyses we employed supervised normali-

zation of microarrays (SNM)26 because it optimally con-

trols for confounding between technical and biological

sources of variance. The full dataset consisted of 297 indi-

viduals of European ancestry, 18 of East Asian ancestry, and

95 of predominantly African ancestry, but because African

ancestry is associated with mild differential expression of

one third of the genes and an almost 4-fold elevation in

rare variant counts in the promoter regions (consistent

with HapMap estimates39,40), we also considered each of

the two larger population groups separately. The same

trend was observed in both the European and African

American samples but with only marginal significance in

the latter due to the reduced sample size. Similarly, the

result holds when we replaced total rare variant counts

with rare haplotype counts, noting that some individuals

carry alleles that differ from the reference allele at two or

more sites. Because some genes show flatter distributions

of expression in African ancestry samples, there is an

excess of African ancestry at the extremes for the com-

bined analysis, which we conservatively corrected by addi-

tionally standardizing the gene expression within each

population group, which reduced the strength of the asso-

ciation with rare variant counts, particularly for increased

expression (Figure S1D). Larger sample sizes will be

required to explore whether there are population differ-

ences in rare variant contributions.

Further evidence that the regression models truly cap-

ture enrichment for rare variants at extremes of gene

expression comes from the observation that the fit and sig-

nificance improve after adjustment for covariates that are

known to influence gene expression. Figure 2B shows the

model fit for the Europeans (so as to avoid false positives

due to population stratification) when gene expression

bins were reassigned to the residuals after also fitting

known common variant eQTL effects29 for each gene, as

well as principal component scores for seven common

axes of peripheral blood gene expression covariance.28

These seven axes collectively explain an average of 26%

of the expression variance of the 472 genes (range 2% to

89%), which is approximately four times as much as the

variance explained by the major cell types in whole blood

(average 6%, range 0% to 44%; Figure S5). Fitting common

eQTLs and the axis scores improves themodel R2 from 0.05

(p ¼ 0.07) to 0.17 (p ¼ 0.0003, permutation p < 0.0001).

Next we asked whether the enrichment might be attrib-

uted to particular classes of gene or gene region, summari-

zing the results in Table S1 and Figure S4. First, categorizing

all variants with respect to predicted regulatory potential

according to RegulomeDB30 classifications confirms that

variants that lie within features such as DNase hypersensi-

tive sites or transcription factor binding sites (classes 1–4)

are more enriched at the extremes than all other variants

in classes 5–7 (p ¼ 0.002 versus 0.08). Second, surprisingly,
The Americ
the enrichment was much stronger for variants located

downstream of the transcription start site (p ¼ 0.0007)

versus upstream (p¼ 0.09). Third, we investigated whether

there was a difference between overall low-abundance and

high-abundance transcripts by dividing the dataset into

two halves according to that parameter, but no difference

was noted. Analyzing the genes separately in sets with

low, intermediate, and high levels of promoter polymor-

phism suggests that the enrichment is observed across all

levels of polymorphism. Notably as well, the burden re-

mains when we reduced the minor allele frequency

threshold to 0.01 (Figure S1F), reflecting the fact that the

majority of rare variants are found in five or fewer

individuals.

The most striking differential enrichment was observed

with respect to gene function. The 472 genes were chosen

for analysis in order to obtain approximately equal repre-

sentation with respect to two criteria: whether or not

they contain known common variant eQTLs, and whether

or not they are thought to be associated with common

chronic diseases. Genes not represented on the Metabo-

Chip31 are significantly more likely to be enriched for

rare regulatory variants (p ¼ 93 10�6 versus 0.73 for meta-

bolic disease-related genes). To confirm that this is signifi-

cant, we compared the deviation in R-squared values with

those of 1,000 random partitions of the European dataset

keeping the number of individuals in the two sets con-

stant, and observed that the Metabochip deviation is to-

ward the tail (p ¼ 0.007). A similar trend was observed

for genes on the Immunochip,32 p ¼ 0.005 versus 0.11,

but this difference was not significant relative to the

random partitions. These trends toward reduced rare regu-

latory SNP presence in promoters of disease-associated

genes might be explained by relaxation of purifying selec-

tion on genes not associated with disease.

The possibility that some genes are more tolerant of regu-

latory variants is also implied by the observation that genes

with common eSNPs are much more likely to harbor

rare promoter-proximal variants affecting gene expression

(p ¼ 0.0006) than those without (p ¼ 0.11). Furthermore,

genes with low promoter polymorphism (p50P) relative to

coding region polymorphism (pcod) highlighted in

Figure 3A are highly significantly depleted for rare variants

in the top decile of effect sizes inferred from our data

(Figure 3B; t test contrasting number in bottom 10% of

low p50P / pcod genes against the remainder, p ¼ 3 3 10�5).

The deficit is not due solely to low polymorphism because

the contrast remains significant when p50P is included as a

covariate, and the bottom 10% of p50P genes overall are as

likely to harbor large effect rare variants as all other genes.

This result raises the possibility thatmore extensive analyses

of rare regulatory variant association with transcript abun-

dance in different tissuesmight give rise to ameasure of pro-

moter region tolerance to functionalmutation similar to the

RVIS41 and constraint scores42 that classify genes with

respect to intolerance to disruptive and pathogenic protein

mutations.
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Figure 3. Genes with a Low Ratio of Pro-
moter to Coding Polymorphism Are Intol-
erant to Large Effect Regulatory Variants
(A) Regression of p50P on pcod highlighting
the bottom 10% of genes with the largest
negative residuals (lowest ratio, red) and
top 10% (blue).
(B) Plot of relationship between the num-
ber of variants per gene in the top decile
of estimated effect size from all 8,833 rare
variants (MAF < 0.05) and residual from
the regression in (A) as a measure of rela-
tive promoter polymorphism.
Another potential source of functional regulatory varia-

tion is divergent promoters derived from admixture with

archaic humans. We identified 31 genes in the dataset

that harbor haplotypes with 4 or more rare variants in Eu-

ropeans, and for 8 of these genes (26%), the divergent

haplotype matches informative Neandertal or Denisovan

sequences. Similarly, 15 of 75 (20%) haplotypes with 3 or

more rare variants appear to be archaic, whereas less diver-

gent haplotypes are more likely to be generated by succes-

sivemutations in the human lineage. The remaining diver-

gent haplotypes might represent Neandertal alleles not

found in the Altai cave individual, as-yet-unrecognized

archaic lineages, or fast-evolving alleles also present in

the African gene pool. Two of the non-archaic divergent

haplotypes, both also found in multiple African ancestry

individuals in our sample, were likely to associate with

elevated expression, in CDK10 (2 individuals, two-tailed

t test p ¼ 1.2�10) and NDUFB10 (12 individuals, two-tailed

t test p ¼ 0.0028). By contrast, there was no tendency for

any of the archaic haplotypes to be associated with

extreme expression in peripheral blood. Further analyses

imputing ancestry based on long-range haplotypes from

multiple Neandertal individuals, and assessments in multi-

ple tissues, might nevertheless define roles for archaic pro-

moter polymorphism in gene regulation.

In order to estimate the frequency and magnitude of ef-

fects that would be consistent with the observed enrich-

ments, we performed a simulation study where effects

were assigned to the empirically determined genotypes

and added to randomly generated and normally distributed

gene expression values. Figure 4A shows the actual observed

effects from the data, and this distribution is compared

with those drawn from a gamma(1.5, 0.12) distribution

(Figure4B) that generates results comparable to theobserved

enrichment (Figure4C). Theestimatedeffect sizesunder this

model are somewhat smaller than those estimated from the

data, probably a consequenceof samplingoverestimation in

the experiment and the absence of technical noise in the

simulated data. However, the result suggests that observed

effect sizes are very rarely greater than 2 SDs and that most

of the enrichment is driven by rare variants with influences

comparable to those of common eQTLs, namely allelic sub-

stitutions in the range of 0.5 to 1 SD.

Next we replicated the result with an independent data-

set consisting of 75 whole-genome sequences of mixed
306 The American Journal of Human Genetics 98, 299–309, February
ancestry, linked to whole-blood RNA-seq profiles.

Figure S5 shows that the same trend was observed with

the 472 genes as in the Atlanta cohort, but owing to the

small sample size of individuals the result is only signifi-

cant at p ¼ 0.008. However, increasing the analysis to

include the same total number of comparisons as in the

CHDWB, namely 4,633 genes, and adjusting for the axes

of variation as well as a strong surrogate variable corre-

sponding to ancestry provides clear replication of the

rare variant enrichment (R2 ¼ 0.49, p ¼ 2 3 10�11, permu-

tation p < 0.0001; Figure 2C).

To experimentally validate rare variant regulatory effects

predicted from the statistical analysis, we used CRISPR/

Cas9 to mutagenize four sites that had estimated effect

sizes greater than 5-fold higher or lower than the popula-

tion mean in a single individual, in K562 erythroleukemia

cells.43 11 individual clones were grown for each disrup-

tion and once cleavage was confirmed via the T7E1

assay,37 indicating 16% to 23% average heterozygosity,

5 clones were chosen for RNA abundance measurement.

Droplet digital RT-PCR,38 which quantifies relative abun-

dance by counting the number of nanodroplets from a

dilution of the RNA sample that yield PCR product, as-

sessed relative to control genes, was used to demonstrate

that disruption of three of the four sites resulted in reduced

or increased transcript abundance (Table S3). Disruption of

rs182080358 associated with increased expression of

COMMD4 weakly increased transcript abundance in three

of the four clones and greatly increased it in another. All

five clones with disruptions in UQCC reduced expression

almost by half, whereas disruption of a negative control site

had no effect and four of five clones with disruptions in

TDP2 reduced expression to varying degrees (Figure S3).

Because our CRISPR protocol causes small deletions rather

than targeted replacement of polymorphisms, it is ex-

pected that the disruptions remove binding sites for tran-

scriptional activators in each case. This could cause loss

or gain of expression depending on the nature of the tran-

scription factor, but it is notable that in each case the effect

of disruption was in the same direction as the nucleotide

substitution. The difference in estimated effect size might

be attributed to over-estimation of the effect from the mi-

croarray data and underestimation in the CRISPR clones

that have incomplete heterozygosity because K562 cells

are largely triploid.43
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Figure 4. Estimation of Effect Sizes of Rare Variants
(A) The distribution of absolute values of the estimated effect size
from the CHDWB data as a function of the number of alleles in the
sample. Boxes showmean and interquartile range with whiskers at
1.5 times IQR with outliers as single points.
(B) Comparison of estimated effect size distribution from the data
(bold curve) and in the simulation (thin black curve) showing
slight excess of larger effect variants in the observed data.
(C) Simulated model fit assuming a gamma distribution with
gamma(1.5,0.12), for 472 genes in 279 individuals, showing
excess of extreme expression as in the actual data (R2 ¼ 0.18,
p ¼ 0.0002).
Discussion

These experiments demonstrate that the combination of

gene sequencing with transcript profiling in peripheral

blood has good potential as a screening approach to iden-
The Americ
tify rare promoter-proximal variants that significantly

disrupt the regulation of gene expression. Although the

average effect sizes we estimate are not large, they are on

a par with those estimated for disease-associated common

eQTLs.29 That is to say, large-effect rare variants typically

alter expression of a gene between one half and one stan-

dard deviation unit. For a transcript otherwise expressed

in the inter-quartile range, namely in the middle half of

the distribution, this will often be enough to cause it to

shift it to the upper or lower decile where it would presum-

ably be more likely to contribute to pathology or

abnormality.

Two other studies have also found indirect evidence for

rare variant influences on gene expression in cell lines,

albeit spread across extended cis-regulatory regions. Mont-

gomery et al.44 performed eQTL analysis on the 1000

Genomes Project lymphoblast cell lines and observed

that transcripts with rare instances of allele-specific expres-

sion (ASE) had a median of four perfectly concordant rare

putative regulatory variants within 100 kb of the TSS,

compared with three for control transcripts not exhibiting

ASE. Interestingly, the enrichment was greater for non-syn-

onymous than synonymous coding ASE variants and

biased to lower expression, suggesting an epistatic interac-

tion between regulatory and structural polymorphism.

They also found that very rare alleles in conserved putative

regulatory sites were more likely to be 2 SDs from the

mean. Reanalyzing the Geuvadis lymphoblast cell line

data, Zeng et al.45 focused on rare instances where the cor-

relation between two transcripts was aberrant in a few in-

dividuals and described an enrichment of private variants

specifically in the vicinity of enhancers in the 1 Mb region

of the genes.

We do not observe any tendency for variants to be more

likely to increase or decrease gene expression, which is

consistent with the inference that globally, transcript

abundance is under stabilizing selection.14,15 Recent re-

sults from yeast46 also indicate that there is selection

against noise promoted by regulatory variants, so it will

be interesting in larger studies to evaluate whether genes

with reduced promoter relative to coding polymorphism

also tend to have reduced expression variability due to

rare variants.

If our experimental strategy can be applied to tissues or

cell types directly relevant to certain pathologies, such as

neurons or cardiac cells, it could enhance efforts to infer

whether rare variants in regulatory regions are functionally

deleterious. It is possible that iPSC culture might be bene-

ficial in this regard, particularly if the effects on transcrip-

tion are greater in uniform cell culture than in mixed

whole-blood cell populations from individuals who

experience a wide range of environments. By extrapolation

from our data, we estimate that the average individual

probably carries several dozen such variants that cause

gene expression to be toward the extreme, and conse-

quently these cannot be ignored as a potential source of

disease-related pathology. Determination of whether or
an Journal of Human Genetics 98, 299–309, February 4, 2016 307



not rare regulatory variants are sufficient to cause rare dis-

eases in the samemanner as structural variants are inferred

to will require experimental designs targeted to individuals

with particular congenital disorders.
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