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The application of the principles of evolutionary biology into

medicine was suggested long ago and is already providing

insight into the ultimate causes of disease. However, a full

systematic integration of medical genomics and evolutionary

medicine is still missing. Here, we briefly review some cases

where the combination of the two fields has proven profitable

and highlight two of the main issues hindering the development

of evolutionary genomic medicine as a mature field, namely the

dissociation between fitness and health and the still

considerable difficulties in predicting phenotypes from

genotypes. We use publicly available data to illustrate both

problems and conclude that new approaches are needed for

evolutionary genomic medicine to overcome these obstacles.
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Introduction. Two views of medicine
The field of evolutionary medicine, also called Darwi-

nian medicine, was established in the seminal papers by

Paul Ewald (1980) [1] and by George C. Williams and

Randolph Nesse (1991) [2��], who first advocated the

idea that natural selection and, in a wider sense, evol-

utionary biology, could help understanding the origins

and causes of disease in our species. However, the links

between evolutionary and medical thought are older

than that. For example, evolutionary principles had

been unwittingly applied by slave traders, who would

lick the skin of African slaves to ascertain their chances
www.sciencedirect.com 
of surviving the lengthy and arduous journey to the New

World. Individuals tasting less salty were less prone to

experience dehydration and thus more likely to survive

the trip [3]. In perhaps one of the first uses of evolutionary

thought, Muller, in 1948, attempted to explain why an

ailment existed rather than focusing on how it appears and

how to alleviate it — suggesting that fevers could be an

adaptation in response to bacterial toxins. This idea was

proven correct almost 40 years later [4,5] and, since then,

Darwinian medicine has been providing insight into the

evolutionary causes of complex diseases, such as cancer [6]

and processes like ageing [7,8��].

In contrast, the field of medical genomics focuses on

immediate questions about how diseases appear and how

they advance within an organism [9,10]. Over the last

50 years, genotype-phenotype studies aimed to identify

genetic variants responsible for disease susceptibility and

elucidate their molecular mechanisms. As early as the mid-

1960s, an HLA haplotype had been associated to Hodgkin’s

disease [11,12], and by the early 1970s, several other HLA

loci were linked to autoimmune conditions, like type 1 dia-

betes [13]. Thanks to these and other studies, some of the

molecular mechanisms behind many diseases were unra-

veled prior to the genomics era. Two notable cases are the

mutations associated with Huntington’s disease and cystic

fibrosis. The first caused by the expansion of the simple

repeat ‘‘CAG’’ in the HTT (huntingtin) gene [14] and the

second due to the deletion of a phenylalanine in the CFTR
gene [15]. Progress in this area accelerated once the human

genome was completed in 2001 [16], and continues to

advance as high-throughput-omics technologies become

more accessible [17]. Many of these advances are already

resulting in new diagnostic and therapeutic tools that are

improving human health world-wide [18].

Unfortunately, these two views of medicine have not yet

fully converged. The potential benefits of an evolutionary

approach are not widely recognized within medical geno-

mics, and much less within clinical practices. Although

many efforts are currently under way to raise awareness

about evolutionary thought [19,20], most medical schools

still lack an evolutionary biology course [21��]. This state

of affairs is somewhat surprising, as a combined formu-

lation of the two views of medicine presented above

would result in a much deeper understanding of disease.

This combined field could be called evolutionary genomic
medicine or EGM, even if other names emphasizing the

genomic, rather than the medical, aspect have been

proposed [22]. EGM studies disease at different levels:
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from its ultimate evolutionary origin to its immediate

molecular mechanisms. EGM research is gathering

momentum and should eventually become a burgeoning

area. This type of research has already proved construc-

tive but two main blockers hinder its full-fledged appli-

cation. We review them below.

Evolutionary genomic medicine: successes
thus far and challenges ahead
Examples of case studies for EGM are piling up. Perhaps

the better known instances of a successful application of

this perspective are the text-book example of sickle-cell

anemia [23,24] and the identification of several mutations

associated to lactase persistence [25], whose celebrated

explanation is the co-evolution of dairy farming cultures

and lactose tolerance in adults [26,27]. The consequences

of the artificial selection imposed by slave licking have

also been understood thanks to EGM. Since genetic

variants favoring salt and liquid retention were positively

selected before and during the ocean trip, current African

Americans have increased odds of developing hyperten-

sion [3]. Another example is the impact that the Black

Death possibly had on gene frequency variation in Eur-

opeans. It has been hypothesized that this epidemic

shaped variation at the CCR5 locus that now provides

resistance to other infectious diseases, such as AIDS [28].

In spite of these cases illustrating the value of EGM,

evolutionary approaches are far from being commonplace.

The slow advance of EGM has many causes [21��], but we

believe that two of them are particularly challenging since

they highlight two glaring gaps in our knowledge: the

twin dissociations between health and fitness and be-

tween genotypes and phenotypes.

Dissociation between fitness and health

Natural selection favors reproduction over health. So, in

taking an evolutionary standpoint it is crucial to enquire

about the reproductive consequences of any ‘‘disease’’ or

‘‘condition’’ since, in the end, what we call a ‘‘disease’’ may

have no consequences in terms of natural selection or

evolution [29]. It has been postulated that certain diseases

may be the result of adaptations to ancient environments

that would have lost their advantage today [30]. For

example, the thrifty genotype hypothesis [31�] follows this

line of reasoning by posing that alleles conferring risk for

certain ‘‘affluence diseases’’, such as type 2 diabetes, are

common today because they were advantageous in the

past. During situations when food resources were scarce

those individuals with a more efficient or thrifty metabolism

would be more likely to survive and pass on their now

disadvantageous alleles [32]. Recently, a consortium of

type 2 diabetes provided functional evidence for the idea

that the Hispanic Mexican population presents higher

frequency for risk alleles of type 2 diabetes as an adaptation

to a harsher past environment [33]. Already in his

1962 paper, Neel had foreseen this result ‘‘[. . .] diabetes
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mellitus as an untoward aspect of a thriftiness genotype, which is
less of an asset now than in the feast-or-famine of hunting and
gathering cultures’’ [31�].

Not all diseases have the same relation to fitness. Rather

than past adaptations rendered useless in modern times,

some conditions are more likely to represent complex

trade-offs arising from adaptive pressures toward differ-

ent directions. Consider, for instance, elevated testoster-

one levels. They are known to be beneficial in increasing

reproductive success, but it has recently been suggested

that they may decrease resistance to infections, since the

immune system reallocates to perform further tasks in

situations where testosterone and stress hormones are

released [34,35].

Given these uncertainties, one of the major challenges of

EGM is coming up with an adequate proxy of fitness that

adequately reflects the reproductive impact of a disease.

The difficulty of this endeavor can be grasped by con-

sidering current estimates of the burden of disease in

terms of a standardized measure: Disability-Adjusted

Life Years, or DALYs [36]. The number of lost DALYs

is a unit used by the Institute for Health Metrics and

Evaluation [37], to measure how many life years are lost

due to sickness, living with a disability or premature

death. Some conditions score very low in the DALY scale.

For instance, no deaths and nearly no DALYs are lost due

to psoriasis, an autoimmune disease with around 2–3%

prevalence in populations of European ancestry. Inter-

estingly, the prevalence of psoriasis in Africans is about

half of that proportion [38], which may be suggestive of an

adaptation to different out-of-Africa conditions. Other

diseases, such as child cancers or prenatal disorders, are

far more burdensome.

DALYs lost due to six conditions in five world super-

regions are presented in Figure 1. There are remarkable

differences in lost DALYs even between bordering

regions within the same continent, such as between Wes-

tern & Central Europe in DALYs lost to coronary artery

disease or between Western & Eastern Africa in DALYs

lost to rheumatoid arthritis. These striking variations in the

present impact of disease are good indicators of the diffi-

culties of inferring the past fitness impact of disease.

Consider, for example, the late Pleistocene, when living

circumstances were radically different from now. Even if

we can be sure that infection was a basic component of

health in these times [39], the field still needs much effort

on quantifying the prevalence of many other conditions,

including fatal diseases such as childhood cancers.

Difficulties are increased in the likely scenario that most

genetic variants causing complex disease are shared across

human populations [40], and that, therefore, most of the

differences in DALYs are due to environmental and

lifestyle causes. In short; disease must be sought in
www.sciencedirect.com
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Figure 1
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Disability-Adjusted Life Years (DALYs) across the World. DALYs lost to a

certain disease, per 100 000 DALYs lost in the population in five super-

regions of the World for 7 conditions, including those analyzed in the

genetic risk estimation exercise in the main text (see Section

‘Dissociation between fitness and health’).

Box 1 AUC calculations

SNP selection

We started by downloading the NHGRI GWAS Catalog [52]. We

obtained all the relevant information, including publication date, for

the SNPs that had been reported for the five traits studied here,

namely: bipolar disorder, coronary heart disease, Crohn’s disease,

rheumatoid arthritis and type 2 diabetes. We considered exclusively

studies performed and markers validated in samples of Western

European origin. After that, we classified the associated SNPs by

year of publication of the original study. Sets of 2 consecutive years

were made, starting in 2008, up to 2014. For markers that mapped in

the same region than a previously discovered one, we applied a

linkage disequilibrium threshold of R2 > 0.2 to considering them

potentially as tagging the same locus. In these potentially redundant

cases, we kept the SNPs that come from the studies with the largest

sample sizes.

Risk estimation

With the set of markers per year and per disease obtained above, we

aimed to evaluate the progression of the AUC for each disease.

Using data from the original WTCCC GWAS [49] for each of the

mentioned diseases, we performed 50 random resamplings of

500 cases and 500 controls out of the �2000 cases per disease and

�3000 shared controls analyzed in the original paper.

For each of these 50 groups of 1000 individuals per disease we

estimated the individual risk, as previously reported in [53]. To set a

neutral reference background, we used the genotypic frequencies

from 85 European ancestry individuals (CEU population) from the

1000 Genomes Project [54]. Out of these frequencies, and using a

custom R [55] script, we simulated 100 000 individuals and

estimated their genetic risk scores. Genetic risks were computed

assuming the classical additive model by multiplying the number of

risk alleles at each locus by the decimal logarithm of the Odds-Ratio

(OR) in that locus and adding up over all risk loci [56�]. Doing so, we

obtained a distribution of risk scores that could represent the

background risk in the CEU population.

The next step was to calculate a risk score for each of the individuals

that had been resampled from the WTCCC study. These individual

risk scores were compared against the simulated background risk

distribution. Individuals were classified as ‘‘cases’’ or ‘‘controls’’

according to the percentile in which they fell. Then, using the

package rocR [57] and the true disease status of these individuals we

calculated the AUCs. Similar results to those shown in the main text

were achieved when using proportions of 5% cases (n = 50), and

95% controls (n = 950).

We are aware that there are several methods available [58] that may

outperform the extremely simple classification approach followed

here [59�]. Moreover, the adequacy of the AUC method is not free of

criticism when applied to genetic risk prediction [60]. However, the

aim of this study is merely to compare how prediction ability changes

over time, rather than to study this ability in itself.
intricate combinations of at least three elements: the

evolutionary history of our lineage, the changing environ-

ments we have faced in the past and the current evol-

utionary forces to which we are exposed [2��,41��,42].

Considering all this simultaneously may be fascinating,

promising and indeed unavoidable if we want the field to

progress, but it is also extremely difficult.

Dissociation between genotypes and phenotypes

A classical problem in evolutionary biology is that the

patterns and modes of selection that were obvious at the

organism level, including many obvious examples of

adaptation, proved difficult to observe at the molecular

level [43]. Moreover, the success of modern evolutionary

studies in detecting cases of natural selection [44] has not

resulted in the unveiling of the genetic architecture of

known adaptations. Rather, researchers have been able to

identify and sometimes even to date adaptive events

while knowledge about their phenotypic effects is scarce

[45,46]. In other words: the molecular mechanisms lead-

ing to even the most obvious phenotypic adaptation, such

as the textbook examples of our opposable thumb and

capacity for language, remain largely unknown; and, like-

wise, most known examples of adaptation at the molecu-

lar level still lack a mechanistic explanation and a link to

relevant phenotypes.
www.sciencedirect.com 
Linking genotypes and phenotypes is anything but

straightforward. Since the burst of Genome-Wide Associ-

ation Studies (GWAS) in 2007 [47��] researchers are

trying to bridge this gap. One initial goal was to predict

individual disease risks under the light of the known

disease-associated loci. Although large collections of data

are available today [48], successes in that field are still

meager. However success in genotype-phenotype predic-

tion is a condition for EGM to achieve its full potential.

To be able to use the tools and methods of molecular
Current Opinion in Genetics & Development 2014, 29:97–102
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evolution in estimating the times of origin of mutations,

their associated selection coefficients and so on, it is

necessary that an appreciable proportion of the pheno-

typic variance for any trait or condition be assigned to

observed variation. Are we getting any closer to that goal?

To obtain a rough evaluation of how fast the field is

moving toward that point, we examined how our ability to

predict phenotypes has changed since the first GWAS

results became available. We downloaded genotype data

from five diseases from the WTCCC study [49�]: Crohn’s

disease (CD), rheumatoid arthritis (RA), bipolar disorder

(BD), coronary artery disease (CAD) and type 2 diabetes

(T2D). Our goal was to compare predictions of the

phenotypes of these individuals using the information

about disease loci available to the scientific community at

four different time points: 2008, 2010, 2012 and 2014. Fol-

lowing the procedures described in Box 1, we classified

individuals and estimated the AUC (Area Under the ROC

Curve). The AUC estimator shows graphically the per-

formance of any binary classifier after it has been applied

to a blind set of cases and controls. An AUC close to 1 is

indicative of a very good classifier, while an AUC close to

0.5 indicates that the classifier is not faring better than

what would be expected by chance.
Figure 2
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Prediction ability (measured as AUC) across time. Graphical

representation of the change in the area under the curve (AUC) for five

WTCCC diseases between 2008 and 2014. Error bars represent the

standard error of 50 resamplings.
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The ability for risk prediction clearly varies significantly

between these diseases (Figure 2). We can distinguish

three main patterns that are clearly related to the genetic

architecture of each disease. For the case of CD, predic-

tion ability was high to start with and has become better

with time. In 2008, our estimated AUC for CD was �0.65,

consistent with predictions by then [50], and with further

studies it has increased to �0.71, also in line with actual

estimates [51�]. This is indicative of a few loci of strong

effects that were detected by the first studies. A different

pattern is observed for BD, with prediction ability

increasing remarkably since 2008, when they were very

poor, already suggesting that this is a highly polygenic

trait affected by many loci of modest effects. Finally, a

third group comprising diseases like RA, CAD and T2D

are very complex disorders where environmental com-

ponents may play a substantial role. Nonetheless, pre-

diction power is slowly rising for each of them.

Most of the increase in AUC can be attributed to the

larger sample sizes of more recent studies (Figure 3). The

initial studies on CD and BD had sample sizes of �5000

individuals, a figure that has doubled by 2014 resulting in

a 4–5% increase in AUC. Contrarily, for T2D and CAD

the more than 7-fold increase since 2008 in sample sizes

had no major impact on prediction. Interestingly, by
Figure 3
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2014 studies on T2D or CAD were almost double in

sample size than those for BD, but the AUCs by 2014 were

similar. These observations suggest that, for some dis-

eases, a sample size increase in one, or perhaps two orders

of magnitude may unveil most of the relevant loci and

would allow the study of their evolution at the molecular

level. For other pathologies, in contrast, it is quite

possible that molecular evolutionary tools cannot be

deployed unless their power to detect tiny and complex

signals of selection is drastically improved.

Concluding remarks
In the immediate future great developments in EGM do

not seem easy. Two major conditions for its progress are

not met: neither are we able to correctly classify patients

as healthy or sick according to their genetic information;

nor have we a clear idea of what has been the fitness

impact of being sick. As it is often the case, treasures are

buried deep, and the promising fruits of EGM will be

difficult to reap. Still, as it is also frequent, progress in

Science often comes from unexpected sources and it is

quite possible that novel, and as yet unidentified, ideas or

approximations contribute to the advancement of EGM.

Given the stakes, they would be most welcome.
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