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Summary

The Romani, the largest European minority group with

approximately 11 million people [1], constitute a mosaic of
languages, religions, and lifestyles while sharing a distinct

social heritage. Linguistic [2] and genetic [3–8] studies
have located the Romani origins in the Indian subcontinent.

However, a genome-wide perspective onRomani origins and
population substructure, aswell as a detailed reconstruction

of their demographic history, has yet to be provided. Our
analyses based on genome-wide data from 13 Romani

groups collected across Europe suggest that the Romani
diaspora constitutes a single initial founder population that

originated in north/northwestern Indiaw1.5 thousand years
ago (kya). Our results further indicate that after a rapid

migration with moderate gene flow from the Near or Middle

East, the European spread of the Romani people was via
the Balkans starting w0.9 kya. The strong population

substructure and high levels of homozygosity we found in
the European Romani are in line with genetic isolation as

well as differential gene flow in time and space with non-
Romani Europeans. Overall, our genome-wide study sheds

new light on the origins and demographic history of Euro-
pean Romani.

Results and Discussion

Previous studies analyzing the fine-scale genetic substructure
of Europeans [9–11] did not include the Romani, even though
they are the largest minority group in Europe. Furthermore,
the location, dating, and magnitude of their suggested out-
of-India diaspora, as well as their relationships with other
populations, remain elusive. To address these issues, we
studied the genome-wide diversity of the Romani people by
analyzing w800,000 single nucleotide polymorphisms (SNPs)
using the Affymetrix 6.0 platform in 152 individuals from 13
Romani groups from eastern, western, and northern parts of
Europe (see Figure 1).

European Romani Genetic Diversity in the Worldwide

Context
First, we explored the genetic relationships of the European
Romani with other worldwide populations using previously
published genome-wide data sets (4,587 individuals and
51,328 shared SNPs; see the ‘‘Reference datasets’’ section in
Supplemental Experimental Procedures). In a first classical
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Figure 1. Sampling Origin of the European Ro-

mani Samples Analyzed in the Present Study

Geographic origin of the European Romani

samples (red dots) analyzed in the present study.

Numbers in parentheses indicate sample sizes.

Gray shades represent Romani population esti-

mates by country according to the Council of

Europe [1]. Blue numbers indicate the approxi-

mate dates for the arrival of the Romani in each

country (see ‘‘Historical data’’ in the Supple-

mental Experimental Procedures).
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multidimensional scaling (MDS or principal coordinates
analysis) [12] based on identity-by-state (IBS) distances,
worldwide individuals tend to be distributed in the first two
dimensions (as in [13, 14]), with European Romani located
withotherwestEurasianpopulations (Figure2AandFigureS1A
available online). We then performed a second MDS focusing
on west Eurasians using balanced sample sizes and
geographic coverage (Figures 2BandS1B). The first dimension
separates Indians from non-Romani Europeans, Caucasus,
and Middle East individuals, and locates in between the
Romani Europeans, Central Asians, and Pakistanis. The
second dimension places European Romani close to non-
Romani Europeans with several Romani individuals included
within the latter, which could be indicative of recent admixture.

Next, we constructed a neighbor-joining tree [15] based on
FST distances [16], using sub-Saharan Africans (Yoruba) as
an out-group. All European Romani groups (except the Welsh
Romani) appear on the same branch and without any non-
Romani European groups (Figure S1C), which would suggest
a shared common origin of the European Romani. Welsh
Romani appear to share ancestry with non-Romani Europeans
and show evidence of strong genetic drift. However, putative
recent admixture with other populations could modify the
position of the European Romani with respect to the other
populations in the tree. Therefore, we applied the ADMIXTURE
clustering method [17] to estimate the membership of each
individual to a range of k hypothetical ancestral populations
(k = 2 to k = 15, see Figures 2C, S1D, and S1E). At k = 2, a longi-
tudinal gradient on the amount of ancestry of each component
is observed from India to Europe (jSpearman’s rhoj = 0.935,
p < 10216, after exclusion of European
Romani; Figure S1F). European Romani
show a lower frequency of the main
ancestral component in Indians (dark
blue) relative to populations from
Central Asia and Pakistan (28% versus
47%, p < 10216, Mann-Whitney test),
and higher than Caucasus, Middle East
and non-Romani European populations
(28% versus 9%, p < 10216, Mann-
Whitney test). This result would suggest
that the origin of the European Romani
could be located in Central or South
Asia (Pakistan and India). Notably, the
main ancestry component present in
Middle Easterners at k = 3 (Figure 2C,
in dark green) shows the lowest average
in the European Romani, followed by the
Indian populations (3.6% and 6.3%,
respectively). This result may indicate
a low genetic contribution to the
European Romani from the Near or Middle East. At k = 5, an
ancestral component present mainly in European Romani
emerges (Figure 2C, in red). At k = 8 (well-supported k, see
Figure S1G), this ancestry component (red) is almost absent
from all non-Romani individuals (on average 1.52%; 95%
confidence interval = 0%–5.5%). At this k, almost 25% of all
European Romani show considerable amounts (above 30%)
of the component mainly present in non-Romani Europeans
(Figure 2C, in gray). Further population substructure within
the European Romani is observed at k = 13. The new compo-
nent (Figure 2C, in black) is mainly present in Croatian Romani
(average w76%), less frequent in the remaining Balkan
Romani (average 23% across Bulgarian, Serbian, and Greek
Romani), and rare in Romani groups from northern and
western Europe (e.g., 6.7% in Baltic and Iberian Romani).

Genetic Substructure within the European Romani
To further explore the genetic affinities within European
Romani, we ran ADMIXTURE only on the 152 Romani individ-
uals using 277,109 LD pruned SNPs. At k = 2 and k = 3, Welsh
(in gray, see Figures S2A and S2B for cross-validation) and
Croatian Romani (in dark green) separate from other Romani
groups. Further k values tend to distinguish Ukrainian (at k =
4) and Balkan versus non-Balkan (at k = 5) Romani, and, within
the latter, a more subtle structure between Central European,
North (Baltic), and West (Iberian) Romani populations (at k = 6
and k = 7, respectively) is observed. The first two dimensions
of an MDS on the same data set separate the Welsh and Croa-
tian Romani from the remaining European Romani groups (see
Figure S2C). The first two dimensions of an additional MDS



Figure 2. Genome-wide Structure of European Romani in the Context of Worldwide Populations

(A and B) Two-dimensional plot of a multidimensional scaling analysis including European Romani and other worldwide populations (A) and European

Romani (filled circles) andwest Eurasians individuals (empty circles) (B), using a balanced sample sizes and geographic coverage (see ‘‘Reference datasets’’

in the Supplemental Experimental Procedures). Same plots with population labels are shown in Figures S1A and S1B.

(C) ADMIXTURE analysis at k = 2, k = 3, k = 5, k = 8, and k = 13 ancestral components with the same individuals in (B). Each vertical bar represents an

individual and the proportion of each individual to the k ancestral components is shown in colors. See Figures S1D and S1E for more ks and the names

of the populations included in each of the Indian states shown in the figure.

See also Figure S1.
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Figure 3. GeneticDifferentiation among theEuro-

pean Romani Mirrors Dispersal via the Balkans

Linear regressions and Spearman’s correlations

between the oldest historical records of the Ro-

mani settlements in each European country and

the genetic distances (FST) between each Romani

population and one of three main geographically

Romani groups: Balkans (i.e., Bulgaria), West

Europe (i.e., Portugal), and North Europe (i.e.,

Estonia). In the case of Bulgaria the values of

each population have been included, whereas in

other cases only the linear regressions are shown

(see also Figure S2E for all population compari-

sons and those including Croatia; Welsh Romani

were not considered in this analysis). See also

Figure S2.
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after removal of individuals with a large percentage of non-
Romani ancestry (>20% of gray component in ADMIXTURE at
k = 5 in Figure 2C) separate Croatian and Ukrainian Romani,
respectively. Notably, Romani individuals from each country
tend to cluster together (see Figure S2D). Supporting this
observation, an analysis of molecular variance (AMOVA [18])
using European Romani groups explains 2.71% of the genetic
variance (p < 0.0005). This value is six times larger than that
between non-Romani European groups (0.47%; p < 0.0005),
which would suggest a relatively strong genetic isolation of
the various European Romani groups tested. Furthermore, in
contrast to the association between genetic and geographic
distances previously described in non-Romani Europeans
[9, 11, 19], we observe here a weak and nonsignificant correla-
tion between the MDS coordinates and the population
geographic coordinates in the European Romani (Pearson
correlation r2 = 0.11 after exclusion of Welsh Romani from
MDS analysis, Mantel test p = 0.06 based on 1,000 resamples).

Furthermore, we checked the correlation between pairwise
FST distances [16] and the dates of first records for the pres-
ence of the Romani people in each sampled European country.
The strongest correlations were observed when genetic dis-
tances of eachRomani population to one of theBalkan Romani
populations (i.e., Serbia and Bulgaria) were considered,
whereas non-Balkan Romani show weak correlations (see
Figures 3 and S2E). In agreement with previous studies [4, 8,
20], this finding would suggest a series of founder coloniza-
tions from the Balkan area (out-of-Balkans) during the Romani
European dispersal (see the next section for further evidence).

Demographic History of European Romani Inferred
from Approximate Bayesian Computation

To test hypotheses about the origin of the European Romani
and to estimate the parameters of their demographic history,
we performed three approximate
Bayesian computation (ABC [21]) anal-
yses. The basic common model con-
siders a proto-Romani population that
splits from a given population of the
Indian subcontinent (Pakistan and India)
and can admix with a hypothetical (un-
sampled)CentralAsian,orNearorMiddle
Eastern population, as well as with non-
Romani Europeans after arriving in
Europe [see ‘‘Approximate Bayesian
Computation (ABC)’’ in the Supplemental
Experimental Procedures]. To avoid any
influence in parameter estimation from chip array data [22],
we used the correction for Affymetrix data from [23] (see Fig-
ure S3A) and restricted our ABC analyses to populations with
a sample size of at least five individuals genotyped on this
platform (see ‘‘Reference datasets’’ in the Supplemental
Experimental Procedures).
In the first ABC analysis, we attempted to identify the current

Romani population that is most genetically similar to the puta-
tive founder population of all European Romani groups. For all
pairwise comparisons of Romani populations, we computed
the Bayes factor between two demographic models, with
one as the source and the other as the descendant population,
and vice versa in the secondmodel (see Figures S3B and S3C).
The Bulgarian Romani showed the largest number of com-
parisons, with a Bayes factor of >1.5 for being the founder
population in all comparisons (12 out of the 12 possible pair-
wise population comparisons; Figure S3D). This finding
delimits the broader geographic area in theBalkans suggested
by our previous analyses. This could be due to the fact that in
the ABC analysis we are conditioning the effective population
size of the parental population as being larger than the descen-
dent one, while controlling for the presence of recent admix-
ture with non-Romani Europeans.
In a second ABC also based on pairwise comparisons, we

used the Bulgarian Romani as a proxy to locate the putative
source population of the European Romani within the Indian
subcontinent (see Figures S3E and S3F). The genetically
similar [24] Indo-European speaking groups from north-west
India (Meghawal in Rajasthan) and northern India (Kashmiri
Pandit in Jammu and Kashmir), were the populations showing
the largest number of comparisons with a Bayes factor of >1.5
(94% each; see Figure 4A and Table S1). Despite a lack of
samples from that area, the highlighted geographic region in
India as the source area for the Romani encloses the Punjab,



Figure 4. ABC Analyses

(A) Contour map (Kriging interpolation) showing

north/northwest region of India (including

Meghawal and Kashmiri Pandit populations) as

the region with the highest probability of repre-

senting the homeland of the European Romani.

The figure shows the percentage of times that

the Bayes factor was >1.5 [see also Table S1,

Figures S3E and S3F, and ‘‘Approximate

Bayesian Computation (ABC)’’ in the Supple-

mental Experimental Procedures]. The Indian

and Pakistan states and provinces correspond-

ing to the sampled populations are shown in

yellow. Punjab provinces (cited in the text but

not sampled) are also indicated. KP, Khyber

Pakhtunkhwa; GB, Gilgit-Baltistan. Note that the

sampling location of Chenchu was originally the

same as Vysya [24], but was relocated to avoid

the same exact position in the density plot.

(B) Reconstructed demographic history of the

European Romani. The width of the branches is

proportional to the estimated effective popula-

tion sizes and the red lines indicate bottleneck

events. Arrow width indicates migration rates, in

units of number of migrant chromosomes from

the donor population per generation. Time of

the demographic events was estimated with

a generation time of 25 years. See Table S2 and

Figures S3G and S3H for additional information.

See Figure S4 and Tables S3 and S4 for inference

of additional demographic information not con-

sidered in ABC model.

See also Figures S3 and S4 and Tables S1–S4.
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as suggested previously by anthropological, linguistic [2], and
mitochondrial DNA (mtDNA) [8] evidence. However, given that
India is genetically heterogeneous, and endogamy plays an
important role in restricting the genetic variation at a regional
level and to particular caste/tribes, future dedicated sampling
across linguistic and social strata in this Indian subregion is
needed to identify the actual parental population of the
European Romani.

Finally, in a third ABC using Meghawal Indians as a proxy for
the parental Romani population and Bulgarian and Spanish
Romani as proxies for eastern and
western European Romani groups,
respectively (see Figure S3G), we aimed
to estimate the parameters of the
Romani demographic history (see Fig-
ure 4B; see Figure S3H and Table S2
for centrality and dispersion statistics).
The date of the out-of-India founder
event was estimated at w1.5 thousand
years ago (kya). After a strong bottle-
neck, the proto-Romani effective popu-
lation size became 47% of the parental
Indian population. During the migration
toward Europe, the Romani would have
undergone modest genetic admixture
with the populations encountered,
including Middle East, Caucasus and
Central Asia (number of migrants per
generation estimated to be w2.2% of
theproto-Romani population sizeduring
13 generations, or w330 years). Around
0.9 kya, the eastern and western
EuropeanRomaniwouldhavediverged. ThewesternEuropean
Romani would have undergone an additional bottleneck
reducing their population size to 70% of that of eastern Euro-
pean Romani. Finally, both western and eastern European
Romani would have admixed with non-Romani European pop-
ulations (w4% and w5% of migrants per generation; during
w38 generations or w940 years). In sum, the increasing
genetic distance from the Balkans and the decaying effective
population sizes in western Romani point at cumulative drift
events within Europe as one of the main forces driving the
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extensive genetic differentiation observedwithin the European
Romani, regardless of their recent common origin.

Signatures of Bottlenecks and Endogamy in European

Romani Inferred from Genomic Homozygosity
A demographic history of bottlenecks and isolation is ex-
pected to leave a footprint in the levels of genomic homozy-
gosity [25]. We investigated runs of homozygosity (ROH)
[26] in Indian, Romani, and non-Romani Europeans. The
shape of the distribution of the cumulative ROH in the
European Romani individuals resembles that expected under
a scenario of recent bottlenecks [27] (see Figure S4A).
Furthermore, we found more and longer ROH in the European
Romani compared to Indians and non-Romani Europeans
(see Figures S4B and S4C and Table S3), including very
long tracts (>20 Mb) absent in non-Romani Europeans, which
suggests that consanguineous marriages may be common in
all European Romani groups. Interestingly, ROH statistics
correlate positively with the blue and red ancestral compo-
nents (k = 2 and k = 5 in Figure 2C), putative Indian and
Romani respectively, but negatively with the gray in k = 5
(European one, see Table S4). Overall, the extensive ROH
patterns in the Romani are in agreement with decreases in
the Romani effective population sizes, as suggested by the
ABC analyses and with endogamous marriage practices.
Interestingly, the Welsh Romani also show extensive ROH in
their genomes. The finding of typically Indian mtDNA lineages
in the Welsh Romani samples (see ‘‘mtDNA haplotype classi-
fication’’ in the Supplemental Experimental Procedures)
confirms their maternal Romani origin. Thus, our data suggest
that either the Welsh Romani admixed in situ with non-
Romani Europeans and afterward underwent strong isolation,
or that they received genetic admixture with an already iso-
lated local population, such as the so-called ‘‘native travelers’’
[28]. Future studies are needed to investigate possible admix-
ture between Welsh Romani and travelers and any potential
sex bias in the admixture between Welsh Romani and non-
Romani Europeans.

Genetic Admixture Dynamics between Romani
and Non-Romani Europeans

The demographic model used in ABC assumed a constant
migration rate from European non-Romani to Romani popula-
tions [see ‘‘Approximate Bayesian Computation (ABC)’’ in the
Supplemental Experimental Procedures]. However, additional
information about the timing of such an admixture event can
be inferred from the length of ancestral chromosomal
segments. Recent geneticmigration and admixture from Euro-
pean non-Romani to Romani populations is expected to
produce both Romani individuals with long chromosomal
segments of non-Romani European ancestry, as well as others
without any such traces. Over time, cumulative recombination
events are expected to shorten and spread these non-Romani
European chromosomal tracts across Romani individuals. To
identify the segments of Indian and non-Romani European
ancestry in the European Romani genome, we used HapMap
3 [29] European (CEU) and Indian (GIH) individuals as proxy
parental populations (see ‘‘Local ancestry analyses in Euro-
pean Romani’’ in the Supplemental Experimental Procedures)
and applied the HAPMIX [30] algorithm to detect local ancestry
in admixed populations. We first performed two analyses to
investigate how well HAPMIX distinguishes the ancestry of
the two parental populations in the European Romani genome.
First, we computed IBS distance matrices between each pair
of individuals for each subset of SNPs that HAPMIX ascribes
to Indian and European ancestry, and compared them. We
observed that the two IBS matrices were significantly less
correlated than those calculated from randomly selected
SNPs (1,000 random samplings, p < 0.0005). Second, we
observed a high correlation (see Figures S4D and S4E)
between the averaged ancestry estimates for the Romani indi-
viduals by HAPMIX and StepPCO, an independent algorithm
for local ancestry estimation [31] (r = 0.935, p < 2.2 3 10216),
as well as when comparing HAPMIX and ADMIXTURE (r =
0.93, p < 2.2 3 10216). These observations suggest that HAP-
MIX identifies ancestral chromosomal segments in the Romani
genomes.
We then analyzed the length of the genomic segments of

non-Romani European origin. Strikingly, several Romani
populations from Central Europe (Slovakia, Hungary, and
Romania) and from the Balkan area (Bulgaria and Croatia)
show lowmean values of genetic admixture, but a few individ-
uals present very long segments of non-Romani origin (Figures
S4F andS4G). This would suggest a recent and ongoing shift in
the social rules of the acceptance of Romani and non-Romani
couples within Romani groups. Conversely, European Romani
from Lithuania, Portugal, and Spain show higher non-Romani
European admixture but in shorter chromosomal tracks. This
is suggestive of older patterns of genetic admixture and
implies higher levels of recent genetic isolation from non-
Romani Europeans in these countries. Alternatively, mixed
couples may leave the Romani communities and integrate
into the non-Romani societies, and thus would not be sampled
from Romani groups in these countries.

Conclusions

The present study constitutes the most comprehensive
survey available thus far on the genome-wide characterization
and demographic history of the European Romani. Our data
suggest that European Romani share a common genetic
origin, which can be broadly ascribed to north/northwestern
India around 1.5 kya. After a modest genetic contribution
from the populations encountered through their rapid diaspora
from India toward the European continent, our data indicate
that the Romani dispersed from the Balkan area around
0.9 kya. We further observe evidence of secondary founding
bottlenecks and small population sizes, together with isolation
and strong endogamy. Our data further imply that in more
recent times, temporally and geographically variable admix-
ture events with non-Romani Europeans have left a footprint
in the Romani genomes. Overall, our analyses suggest that
despite the relatively short time span, the demographic history
of the Romani is rich and complex. Further studies with more
dedicated geographical sampling and resequencing data
would help in defining the Indian parental population of the
Romani, as well as further details of their migration and sub-
sequent history in Europe.

Experimental Procedures

This study was carried out under approval by institutional review boards (or

their equivalents) of the various organizations involved. DNA was isolated

from blood and buccal samples collected with informed consent from 206

unrelated volunteers who self-identified as Romani (see ‘‘Romani samples’’

in the Supplemental Experimental Procedures), and genotyped on Affyme-

trix 6.0 arrays. After SNP quality filtering and removal of individuals likely to

be related, there were 152 samples genotyped for 807,002 autosomal SNPs

for subsequent analyses. For some analyses, we merged our data with data

from 4,587 worldwide individuals [9, 13, 14, 29, 32–34], and for others with
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data from 1,234 west Eurasian individuals, both data sets with 51,328 SNPs.

For further details, see the Supplemental Experimental Procedures.

Data Availability

Depending on the research purpose, data are available up on request for

nonprofit scientific research under an interinstitutional data access

agreement.

Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-

dures, four figures, and four tables and can be found with this article online

at http://dx.doi.org/10.1016/j.cub.2012.10.039.
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